原题:
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
题意:
01背包问题的原题。
题解:
01背包原题,要做出的决定就是这个物品买还是不买,状态方程是
for(i=0; i<n; i++)
for(j=m; j>=w[i]; j--)
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
别的就没啥了,原型题
代码:AC
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=12880+5;
int v[maxn];
int w[maxn];
int dp[maxn];
int max(int x,int y)
{
return x>y?x:y;
}
int main()
{
int n,m;
while(cin>>n>>m)
{
int i,j;
for(i=0; i<n; i++)
cin>>w[i]>>v[i];
memset(dp,0,sizeof(dp));
for(i=0; i<n; i++)
{
for(j=m; j>=w[i]; j--)
{
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}
}
cout<<dp[m]<<endl;
}
return 0;
}