B. Ehab and subtraction

本文探讨了一种特定的数组操作算法,即重复执行查找并减去数组中最小非零元素的过程。通过排序和逐步减小元素值的方法,文章提供了一个基本的实现方案,并讨论了其时间复杂度和优化方向。
                              B. Ehab and subtractiontime limit per test1 secondmemory limit per test256 megabytesinputstandard inputoutputstandard outputYou're given an array aa. You should repeat the following operation kk times: find the minimum non-zero element in the array, print it, and then subtract it from all the non-zero elements of the array. If all the elements are 0s, just print 0.InputThe first line contains integers nn and kk (1≤n,k≤105)(1≤n,k≤105), the length of the array and the number of operations you should perform.The second line contains nn space-separated integers a1,a2,…,ana1,a2,…,an (1≤ai≤109)(1≤ai≤109), the elements of the array.OutputPrint the minimum non-zero element before each operation in a new line.ExamplesinputCopy3 5

1 2 3
outputCopy1
1
1
0
0
inputCopy4 2
10 3 5 3
outputCopy3
2
NoteIn the first sample:In the first step: the array is [1,2,3][1,2,3], so the minimum non-zero element is 1.In the second step: the array is [0,1,2][0,1,2], so the minimum non-zero element is 1.In the third step: the array is [0,0,1][0,0,1], so the minimum non-zero element is 1.In the fourth and fifth step: the array is [0,0,0][0,0,0], so we printed 0.In the second sample:In the first step: the array is [10,3,5,3][10,3,5,3], so the minimum non-zero element is 3.In the second step: the array is [7,0,2,0][7,0,2,0], so the minimum non-zero element is 2.



#include<bits/stdc++.h>

using namespace std;

int a[1000001];int j;int x;

int main()

{

  
int n,k;

  
cin>>n>>k;

  
for(int i=0;i<n;i++)

   {

      
cin>>a[i];

   }

  
sort(a,a+n);

  
while(k--)

{  
while(a[j]-x==0&&j<n-1)

      
{

          
j++;

      
}

      
cout<<a[j]-x<<endl;

      
x=a[j];

 

   }

  
return 0;

}

 


这个粘贴格式。。。无语了
啊,这个一下写好了,是想的排序后,每一次减掉每一次最小值,相当于模拟了导致超时,但是没有想到这个本质,应该相当于减掉前面一个数,所以要尽量化简,越简单,越不容易错。

This time Baby Ehab will only cut and not stick. He starts with a piece of paper with an array a a of length n n written on it, and then he does the following: he picks a range ( l , r ) (l,r) and cuts the subsegment a l , a l + 1 , … , a r a l ​ ,a l+1 ​ ,…,a r ​ out, removing the rest of the array. he then cuts this range into multiple subranges. to add a number theory spice to it, he requires that the elements of every subrange must have their product equal to their least common multiple (LCM). Formally, he partitions the elements of a l , a l + 1 , … , a r a l ​ ,a l+1 ​ ,…,a r ​ into contiguous subarrays such that the product of every subarray is equal to its LCM. Now, for q q independent ranges ( l , r ) (l,r), tell Baby Ehab the minimum number of subarrays he needs. Input The first line contains 2 2 integers n n and q q ( 1 ≤ n , q ≤ 10 5 1≤n,q≤10 5 ) — the length of the array a a and the number of queries. The next line contains n n integers a 1 a 1 ​ , a 2 a 2 ​ , … …, a n a n ​ ( 1 ≤ a i ≤ 10 5 1≤a i ​ ≤10 5 ) — the elements of the array a a. Each of the next q q lines contains 2 2 integers l l and r r ( 1 ≤ l ≤ r ≤ n 1≤l≤r≤n) — the endpoints of this query's interval. Output For each query, print its answer on a new line. Examples Inputcopy Outputcopy 6 3 2 3 10 7 5 14 1 6 2 4 3 5 3 1 2 Note The first query asks about the whole array. You can partition it into [ 2 ] [2], [ 3 , 10 , 7 ] [3,10,7], and [ 5 , 14 ] [5,14]. The first subrange has product and LCM equal to 2 2. The second has product and LCM equal to 210 210. And the third has product and LCM equal to 70 70. Another possible partitioning is [ 2 , 3 ] [2,3], [ 10 , 7 ] [10,7], and [ 5 , 14 ] [5,14]. The second query asks about the range ( 2 , 4 ) (2,4). Its product is equal to its LCM, so you don't need to partition it further. The last query asks about the range ( 3 , 5 ) (3,5). You can partition it into [ 10 , 7 ] [10,7] and [ 5 ] [5]. 解法:条件就是两两互质,预处理质因⼦集,找出每个数下⼀个不互质的位置。 i 进⼀步的,可以找出每个 作为左端点,可⾏的右端点最⼤是多⼤(区间 min)。 2j 因此每次划分极⻓就可以了,令 f(i, j) 然后枚举答案的⼆进制下每⼀位即可。 。 求C++代码.
最新发布
06-10
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值