HDU-1018(n!的位数)

本文探讨了在处理大整数阶乘时如何高效计算其位数的方法,适用于安全传输数据、加密等应用中。通过使用对数性质,提供了一种计算n!位数的算法,并给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题传送

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 44891    Accepted Submission(s): 21955


 

Problem Description

In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

 

 

Input

Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.

 

 

Output

The output contains the number of digits in the factorial of the integers appearing in the input.

 

 

Sample Input

 

2 10 20

 

 

Sample Output

 

7 19

 

题意:求n!的位数

公式n的阶乘的位数=(int)log10(n*(n-1)*(n-2).....*2*1)+1=(int)(log10(n)+……log10(1))+1;

 

AC代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
	int n,t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		double sum=0;
		for(int i=1;i<=n;i++)	
		sum+=log10(i);
		printf("%d\n",(int)sum+1);//求位数(int)log10(x)+1 
	}
	return 0;
 } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值