动态规划和贪心算法都是一种递推的方法,当存在最优子结构的时候,用动态规划,贪心是动态规划的特例
注意:那么当存在最的时候就要想到贪心和动态规划
1.深度优先剪枝策略
分析 :先按大的选,有结果就输出,没结果就倒退,选到出最佳方案后就就退出(剪枝)
import java.util.Scanner;
public class Main {
public static int a[] = new int[6];
public static int b[] = { 1, 5, 10, 50, 100, 500};
public static int A;
public static int count = 0;
public static int flag = 0;
public static void main(String[] args) {
Scanner sca = new Scanner(System.in);
for(int i = 0; i < 6; i ++) {
a[i] = sca.nextInt();
}
A = sca.nextInt();
long start = System.currentTimeMillis();
Todo(5);
long end = System.currentTimeMillis();
System.out.println("spend time :" + (end - start) + "ms!");
}
private static void Todo(int cur) {
//跳出递归
if(A <= 0 || cur == -1) {
if(A == 0) {
flag = 1;
System.out.println(count);
}
return;
}
//当找到最优解就跳出循环,实现剪枝的效果
if(flag == 1) {
return;
}
//下一跳
int t = A / b[cur];
t = min(t,a[cur]);
for(int i = t; i >= 0; i --) {
A -= i * b[cur];
count += i;
Todo(cur - 1);
//回溯
count -= i;
A += i * b[cur];
}
}
private static int min(int t, int i) {
if(t < i) {
return t;
}
return i;
}
}
输出结果:
3 2 1 3 0 2
620
6
spend time :1ms!
2.优化方案(贪心策略)
注意:
- 因为不存在倒退的情况(能用500就尽管用),所以,就可以直接用贪心的方法,而不用深搜回溯
- 题目已经声明,至少存在一种支付方案,那么最后的1元零钱一定可以付完最后所差的,所以可用
if(cur == 0) {
return n;
}
import java.util.Scanner;
public class Main {
public static int a[] = new int[6];
public static int b[] = { 1, 5, 10, 50, 100, 500};
public static int A;
public static void main(String[] args) {
Scanner sca = new Scanner(System.in);
for(int i = 0; i < 6; i ++) {
a[i] = sca.nextInt();
}
A = sca.nextInt();
long start = System.currentTimeMillis();
System.out.println(Todo(A,5));
long end = System.currentTimeMillis();
System.out.println("spend time :" + (end - start) + "ms!");
}
private static int Todo(int n,int cur) {
//跳出递归
if(A == 0) {
return 0;
}
if(cur == 0) {
return n;
}
int t = n / b[cur];
t = min(t,a[cur]);
//计算上一阶段 后来返回本次结束的硬币个数
return t + Todo(n - t * b[cur],cur - 1);
}
private static int min(int t, int i) {
if(t < i) {
return t;
}
return i;
}
}
运行结果:
3 2 1 3 0 2
620
6
spend time :0ms!
可见在这里贪心策略的高效性比深搜要好