PCB资料:平衡PCB层叠设计方法与避免设计中串扰

平衡PCB层叠设计方法

平衡结构避免弯曲

不用奇数层设计PCB的最好的理由是:奇数层电路板容易弯曲。当PCB在多层电路粘合工艺后冷却时,核结构和敷箔结构冷却时不同的层压张力会引起PCB弯曲。随着电路板厚度的增加,具有两个不同结构的复合PCB弯曲的风险就越大。消除电路板弯曲的关键是采用平衡的层叠。尽管一定程度弯曲的PCB达到规范要求,但后续处理效率将降低,导致成本增加。因为装配时需要特别的设备和工艺,元器件放置准确度降低,故将损害质量。

使用偶数层PCB

当设计中出现奇数层PCB时,用以下几种方法可以达到平衡层叠、降低PCB制作成本、避免PCB线路板弯曲。以下几种方法按优选级排列。

1.一层信号层并利用。如果设计PCB的电源层为偶数而信号层为奇数可采用这种方法。增加的层不增加成本,但却可以缩短交货时间、改善PCB质量。

2.增加一附加电源层。如果设计PCB的电源层为奇数而信号层为偶数可采用这种方法。一个简单的方法是在不改变其他设置的情况下在层叠中间加一地层。先按奇数层PCB种布线,再在中间复制地层,标记剩余的层。这和加厚地层的敷箔的电气特性一样。

3.在接近PCB层叠中央添加一空白信号层。这种方法最小化层叠不平衡性,改善PCB的质量。先按奇数层布线,再添加一层空白信号层,标记其余层。在微波电路和混合介质(介质有不同介电常数)电路种采用。

平衡层叠PCB优点:成本低、不易弯曲、缩短交货时间、保证质量。

设计中,如何避免串扰

变化的信号(例如阶跃信号)沿传输线由A到B传播,传输线C-D上会产生耦合信号,变化的信号一旦结束也就是信号恢复到稳定的直流电平时,耦合信号也就不存在了,因此串扰仅发生在信号跳变的过程当中,并且信号沿的变化(转换率)越快,产生的串扰也就越大。

空间中耦合的电磁场可以提取为无数耦合电容和耦合电感的集合,其中由耦合电容产生的串扰信号在受害网络上可以分成前向串扰和反向串扰Sc,这个两个信号极性相同;由耦合电感产生的串扰信号也分成前向串扰和反向串扰SL,这两个信号极性相反。

耦合电感电容产生的前向串扰和反向串扰同时存在,并且大小几乎相等,这样,在受害网络上的前向串扰信号由于极性相反,相互抵消,反向串扰极性相同,叠加增强。串扰分析的模式通常包括默认模式,三态模式和最坏情况模式分析。

默认模式类似我们实际对串扰测试的方式,即侵害网络驱动器由翻转信号驱动,受害网络驱动器保持初始状态(高电平或低电平),然后计算串扰值。这种方式对于单向信号的串扰分析比较有效。三态模式是指侵害网络驱动器由翻转信号驱动,受害的网络的三态终端置为高阻状态,来检测串扰大小。这种方式对双向或复杂拓朴网络比较有效。最坏情况分析是指将受害网络的驱动器保持初始状态,仿真器计算所有默认侵害网络对每一个受害网络的串扰的总和。

PCB平台:

http://bbs.16rd.com/forum-39-1.html

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值