yolov5+Repulsion损失函数,解决密集遮挡问题(附带代码可用)

本文介绍了如何使用Repulsion Loss改进YOLOv5,以应对密集遮挡物体的检测问题。Repulsion Loss由吸引项、排斥项(RepGT)和排斥项(RepBox)组成,通过调整预测框与真实目标的关系,提高检测精度。在yolov5中实现了Repulsion Loss,但开启全部三项可能导致预测偏差,建议仅使用吸引项和排斥项(RepGT)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.RepLoss 设计思想

物体遮挡问题可以分为类内遮挡和类间遮挡两种情况。类间遮挡产生于扎堆的同类物体,也被称为密集遮挡(crowd occlusion)。
原文连接:https://arxiv.org/abs/1711.07752
在这里插入图片描述

密集遮挡的主要影响表现在显著增加了行人定位的难度。比如,当目标行人 T 被行人 B 遮挡之时,由于两者外观特征相似,检测器很可能无法进行定位。从而本应该框定 T 的边界框转而框定 B,导致定位不准确。更糟糕的是,由于非极大值抑制(non-maximum suppression/NMS)需要进一步处理主要的检测结果,从 T 移走的边界框可能会被 B 的预测框抑制,进而造成 T 漏检。即,人群遮挡使得检测器对 NMS 阈值很敏感:较高的阈值会带来更多的误检(false positives),较低的阈值则造成更多的漏检(missed detection)。这

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值