在学习KNN算法检测异常操作,在效果验证中,使用交叉验证时,调用了cross_validation函数,结果在编译时报错。
经过查看知道sklearn在0.02版本后改变了cross_validation函数(https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)
cross_val_score、cross_validate均用于交叉验证,返回值就是scores,即每次交叉验证的得分。
导入cross_validate:
from sklearn.model_selection import cross_validate
列子:
from sklearn.model_selection import cross_validate
from sklearn.model_selection import cross_validate
from sklearn import datasets
from sklearn import svm
iris = datasets.load_iris()
clf = svm.SVC(kernel='linear', C=1)
X = iris.data
y = iris.target
scores = cross_validate(clf, X, y, cv=3)
print(scores)
print(scores['test_score'])
导入cross_val_score:
from sklearn.model_selection import cross_val_score
列子:
from sklearn.model_selection import cross_val_score
from sklearn import datasets
from sklearn import svm
iris = datasets.load_iris()
clf = svm.SVC(kernel='linear', C=1)
X = iris.data
y = iris.target
scores = cross_val_score(clf, X, y, cv=3)
print(scores)