最长公共子序列(动态规划)

博客围绕最长公共子序列展开,采用动态规划方法求解。动态规划在处理此类问题时能有效降低复杂度,通过合理规划和状态转移,可高效得出最长公共子序列的结果,在信息技术领域有重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

s1 = [1,3,4,5,6,7,7,8]
s2 = [3,5,7,4,8,6,7,8,2]

d = [[0]*(len(s2)+1) for i in range(len(s1)+1) ]

for i in range(1,len(s1)+1):
    for j in range(1,len(s2)+1):
        if s1[i-1] == s2[j-1]:
            d[i][j] = d[i-1][j-1]+1
        else:
            d[i][j] = max(d[i-1][j],d[i][j-1])


print ("max LCS number:",d[-1][-1])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值