ADA算法知识(六)Ford-Fulkerson algorithm(最大流最小割问题)

本文介绍了Ford-Fulkerson算法,一种用于解决网络流中的最大流问题的方法。以解决 Auckland 市交通拥堵问题为例,展示了如何应用该算法来计算从地点s到地点t的最大交通流量,并寻找瓶颈。通过逐步迭代展示算法过程,得出最大流不超过最小割的结论,并标识出了网络中的一个最小割为11。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ford-Fulkerson algorithm

最大流算法,用于计算流网络中的最大流量

Maximum flow minimum cut theorem  最大流最小割问题

[Traffic Problem] You got re-elected as the Mayor of Auckland and now need to deliver your election promise to improve the traffic congestion problem. The graph below shows six inner-city locations and the capacities of the roads linking these locations. Your task is to find out how much traffic does this road layout allow to go from the location s to the location t and where the bottleneck is.

(a) Compute the maximum flow f by applying the Ford-Fulkerson algorithm. Show your working by drawing the current flow and residual graph after each iteration of the algorithm.

(b) Identify a minimal cut in the network.

(a)

(b)

先知道一个概念,最大流一定是小于等于最小割的

cut A-C

A-D

B-C

B-D

so we can get minimum cut is 11

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值