考虑设
f
(
i
)
=
∑
j
=
1
n
j
i
m
j
f(i)=\sum_{j=1}^nj^im^j
f(i)=∑j=1njimj,
用扰动法化简,得到
(
m
−
1
)
∗
f
(
i
)
=
∑
j
=
1
n
j
i
∗
m
j
+
1
−
∑
j
=
1
n
j
i
∗
m
j
=
∑
j
=
1
n
+
1
(
j
−
1
)
i
∗
m
j
−
∑
j
=
1
n
j
i
∗
m
j
=
n
i
∗
m
n
+
1
+
∑
j
=
1
n
m
j
∑
k
=
0
i
−
1
(
i
k
)
∗
(
−
1
)
i
−
k
∗
j
k
=
n
i
∗
m
n
+
1
+
∑
k
=
0
i
−
1
(
i
k
)
∗
(
−
1
)
i
−
k
∑
j
=
1
n
j
k
∗
m
j
=
n
i
∗
m
n
+
1
+
∑
k
=
0
i
−
1
(
i
k
)
∗
(
−
1
)
i
−
k
∗
f
(
k
)
(m - 1) * f(i) = \sum_{j=1}^n j^i * m^{j + 1} - \sum_{j=1}^n j^i * m^j \\ = \sum_{j=1}^{n + 1} (j - 1)^i * m^j - \sum_{j=1}^n j^i * m^j \\ = n^i * m^{n + 1} + \sum_{j=1}^n m^j \sum_{k = 0}^{i - 1} {i \choose k} * (-1)^{i - k} * j^k \\ = n^i * m^{n + 1} + \sum_{k = 0}^{i - 1} {i \choose k} * (-1)^{i - k} \sum_{j = 1}^n j^k * m^j \\ = n^i * m^{n + 1} + \sum_{k = 0}^{i - 1} {i \choose k} * (-1)^{i - k} * f(k)
(m−1)∗f(i)=j=1∑nji∗mj+1−j=1∑nji∗mj=j=1∑n+1(j−1)i∗mj−j=1∑nji∗mj=ni∗mn+1+j=1∑nmjk=0∑i−1(ki)∗(−1)i−k∗jk=ni∗mn+1+k=0∑i−1(ki)∗(−1)i−kj=1∑njk∗mj=ni∗mn+1+k=0∑i−1(ki)∗(−1)i−k∗f(k)
然后 O ( m 2 ) d p O(m^2)dp O(m2)dp就完了
注意特判 m = 1 m=1 m=1的情况
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define poly vector<int>
#define bg begin
cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline void chemx(int &a,int b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=1006;
int fac[N],ifac[N];
inline void init(cs int len=N-5){
fac[0]=ifac[0]=1;
for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
ifac[len]=ksm(fac[len],mod-2);
for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int C(int n,int m){
if(n<m)return 0;
return mul(fac[n],mul(ifac[m],ifac[n-m]));
}
int n,m;
int f[N],pt[N];
int main(){
init(),n=read(),m=read();
if(m==1){cout<<(1ll*(n+1)*n/2)%mod;return 0;}
pt[0]=1;int mt=ksm(m,n+1),inv=ksm(m-1,mod-2);
for(int i=1;i<N;i++)pt[i]=mul(pt[i-1],n);
f[0]=mul(dec(mt,m),inv);
for(int i=1;i<=m;i++){
int res=0;
for(int k=0;k<=i-1;k++)
if((i-k)&1)Dec(res,mul(f[k],C(i,k)));
else Add(res,mul(f[k],C(i,k)));
Add(res,mul(pt[i],mt));
f[i]=mul(res,inv);
}
cout<<f[m];
}