这里今天只爬取一个分类,想要抓取所有小说的朋友,可以修改一下取的标签就可以了;
废话不多说了,我们先安装一下MySQLdb:
执行命令是:pip install mysqlclient
:pip install pymysql
上面的配置好之后我们就直接上代码了:::
spider.py
# -*- coding: utf-8 -*-
import scrapy
from ..items import DingdianItem
class DdSpider(scrapy.Spider):
name = 'dd'
allowed_domains = ['dingdian.com']
start_urls = ['https://www.booktxt.net/xiaoshuodaquan/']
def parse(self, response):
"""
获取每部小说链接地址
:param response:
:return:
"""
novel_list = response.xpath("//div[@class='novellist'][6]//ul//li/a/@href").extract()
# print('***************************************************', novel_list)
for novel in novel_list:
url = novel
yield scrapy.Request(url=url, callback=self.parse2, dont_filter=True, meta={"each_url":url})
def parse2(self, response):
"""
获取每部小说详情链接
:param response:
:return:
"""
each_url = response.meta["each_url"]
"""名称"""
title = response.xpath("//div[@class='box_con']/div[@id='maininfo']//h1/text()").extract_first()
"""作者"""
author = response.xpath("//div[@class='box_con']/div[@id='maininfo']//p/text()").extract_first().split(":")[-1]
"""类型"""
type = response.xpath("normalize-space(//div[@id='wrapper']//div[@class='con_top'])").extract_first().split(" > ")[1]
"""图片"""
cover = 'https://www.booktxt.net' + response.xpath("//div[@id='wrapper']/div[@class='box_con']//div[@id='fmimg']/img/@src").extract_first()
"""简介"""
intro = response.xpath("normalize-space(//div[@id='wrapper']/div[@class='box_con']//div[@id='intro']/p/text())").extract_first()
"""唯一id"""
fiction_id = response.url.split("/")[-2]
item = DingdianItem()
item['title'] = title
item['author'] = author
item['type'] = type
item['cover'] = cover
item['intro'] = intro
item["fiction_id"] = fiction_id
yield item
items.py
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class DingdianItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
title = scrapy.Field()
author = scrapy.Field()
type = scrapy.Field()
cover = scrapy.Field()
intro = scrapy.Field()
fiction_id = scrapy.Field()
pass
settings.py
# -*- coding: utf-8 -*-
# Scrapy settings for dingdian project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# https://doc.scrapy.org/en/latest/topics/settings.html
# https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
# https://doc.scrapy.org/en/latest/topics/spider-middleware.html
BOT_NAME = 'dingdian'
SPIDER_MODULES = ['dingdian.spiders']
NEWSPIDER_MODULE = 'dingdian.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'dingdian (+http://www.yourdomain.com)'
# Obey robots.txt rules
ROBOTSTXT_OBEY = True
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32
# Configure a delay for requests for the same website (default: 0)
# See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16
# Disable cookies (enabled by default)
#COOKIES_ENABLED = False
# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False
# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
# 'Accept-Language': 'en',
#}
# Enable or disable spider middlewares
# See https://doc.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
# 'dingdian.middlewares.DingdianSpiderMiddleware': 543,
#}
# Enable or disable downloader middlewares
# See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
# 'dingdian.middlewares.DingdianDownloaderMiddleware': 543,
#}
# Enable or disable extensions
# See https://doc.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
# 'scrapy.extensions.telnet.TelnetConsole': None,
#}
# Configure item pipelines
# See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
'dingdian.pipelines.DingdianPipeline': 300,
}
MYSQL_HOST = '127.0.0.1'
MYSQL_PORT = 3306
MYSQL_USER = "root"
MYSQL_PASSWORD = "123456"
MYSQL_CHARSET = "utf8"
MYSQL_DBNAME = "fiction_2"
# Enable and configure the AutoThrottle extension (disabled by default)
# See https://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False
# Enable and configure HTTP caching (disabled by default)
# See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
HTTPCACHE_ENABLED = True
HTTPCACHE_EXPIRATION_SECS = 0
HTTPCACHE_DIR = 'httpcache'
HTTPCACHE_IGNORE_HTTP_CODES = []
HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
#
pipelines.py
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
from twisted.enterprise import adbapi
from MySQLdb.cursors import DictCursor
import hashlib
"""定义一个异步存储至mysql的pipeline
scrapy的解析是异步多线程的,解析速度非常快,而mysql的execute()和commit()提交数据库的方式是同步的,所有数据库写入速度比较慢
一旦数量较大,可能会导致item中断插入不及时,造成数据库写入堵塞,最终导致数据库卡死或数据丢失,所以需要使用数据库的异步写入
"""
class DingdianPipeline(object):
def __init__(self, dbpool):
# 初始化线程池对象
self.dbpool = dbpool
@classmethod
def from_crawler(cls, crawler):
args = dict(host=crawler.settings.get("MYSQL_HOST"), port=crawler.settings.get("MYSQL_PORT"),
user=crawler.settings.get("MYSQL_USER"), db=crawler.settings.get("MYSQL_DBNAME"),
passwd=crawler.settings.get("MYSQL_PASSWORD"), charset=crawler.settings.get("MYSQL_CHARSET"),
cursorclass=DictCursor)
# 创建一个线程池对象
# 参数一:用于连接mysql数据库的驱动的名称
# 相当于同时创建了含有很多个线程池对象(游标或者数据库连接)
dbpool = adbapi.ConnectionPool("MySQLdb", **args)
print('链接成功**************************************************************',dbpool)
return cls(dbpool)
def insert_sql(self, cursor, item):
inser_sql = "insert into home_fiction(title, author, type, cover, intro, fiction_id)values ('%s','%s','%s'," \
"'%s','%s','%s') on duplicate key update title=(title)" % (item["title"], item["author"], item["type"], item["cover"],
item["intro"], item["fiction_id"])
cursor.execute(inser_sql)
def process_item(self, item, spider):
"""
在线程池dbpool中通过runInteraction()函数,来实现异步插入数据的操作,runInteraction()会将inser_sql这个函数交给线程池中的某一个线程具体执行.
:param item:
:param spider:
:return:
"""
result = self.dbpool.runInteraction(self.insert_sql, item)
# 如果数据插入失败,会执行addErrback()内部的函数调用
result.addErrback(self.error_info)
def error_info(self, failure):
print("数据插入失败,原因是:", failure)
以上就是所有代码,有什么问题或者这个代码有什么bug,欢迎指教