LangChain和LangGraph 里面的 `create_react_agent`有什么不同

这两个函数虽然名称相同,但来自不同的库(LangChain 和 LangGraph),它们在实现和使用上有一些关键区别:

主要区别

特性LangChain 的 create_react_agentLangGraph 的 create_react_agent
所属库LangChainLangGraph
设计目的单次执行的简单代理基于图的、可循环执行的复杂代理
执行模型线性执行图结构执行(支持循环和分支)
状态管理有限状态管理完整的状态管理和追踪
适用场景简单任务复杂、多步骤任务

LangChain 的 create_react_agent

from langchain.agents import create_react_agent

# 典型用法
agent = create_react_agent(
    llm=llm,
    tools=tools,
    prompt=prompt
)

特点:

  • 基于 ReAct (Reasoning + Acting) 框架
  • 适合单次执行的简单任务
  • 执行是线性的,没有循环或复杂控制流
  • 状态管理相对简单

LangGraph 的 create_react_agent

from langgraph.prebuilt import create_react_agent

# 典型用法
agent = create_react_agent(
    llm=llm,
    tools=tools,
    prompt=prompt
)

特点:

  • 同样基于 ReAct 框架,但在图结构中实现
  • 支持循环执行和复杂控制流
  • 可以处理多轮对话和复杂任务
  • 提供更强大的状态管理和追踪能力
  • 可以与其他图节点组合创建更复杂的代理

如何选择

  1. 选择 LangChain 版本 当:

    • 你只需要简单的单次任务执行
    • 不想引入额外的 LangGraph 依赖
    • 任务流程是线性的
  2. 选择 LangGraph 版本 当:

    • 你需要处理复杂、多步骤的任务
    • 需要循环执行或条件分支
    • 需要更强大的状态管理
    • 计划将代理集成到更大的工作流中

代码示例对比

LangChain 版本

from langchain.agents import create_react_agent
from langchain import hub

prompt = hub.pull("hwchase17/react")
agent = create_react_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({"input": "查询北京天气"})

LangGraph 版本

from langgraph.prebuilt import create_react_agent
from langchain import hub

prompt = hub.pull("hwchase17/react")
agent = create_react_agent(llm, tools, prompt)

# 可以定义更复杂的工作流
workflow = ...
workflow.add_node("agent", agent)
# 添加其他节点和边...

总结

虽然两者都实现了 ReAct 代理模式,但 LangGraph 的版本提供了更强大的工作流控制能力,适合构建复杂的多步骤代理系统。如果你只需要基本的代理功能,LangChain 的版本可能更简单直接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sky丶Mamba

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值