题目:
Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Input
The first line of the input contains an integer T, the number of test cases.
For each test case, the first line contains two integers N(1 <= N <= 10 5) and M(0 <= M <= 10 5).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
Output
For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
Sample Input
2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
Sample Output
Case #1: Yes Case #2: No
解题报告:
在刚上来的时候没有看明白这个题目的意思,以为是全部由白色边去构建生成树的,wa了两发,然后去看题目,发现了题目的意思是,看看是否存在有斐波那契数的白色边数的生成树存在,咱们不可能去暴力的尝试每一条边的取舍顺序,因为边数太大了,所以就开始考虑极端情况,那么就是优先去选择黑色的边去使用,然后最后不足以后再去考虑白色边,这个时候使用的白色边数是最小的,然后去考虑另一个极端情况,就是优先去使用白色边,然后不足再去考虑黑色边,这个时候的白色边数的最大的,说明构建成生成树中白色的边数是介于两者之间的,因为咱们可以替换某一条白色边用黑色边,在这个题目中我错了18次,刚开始两次是没有读明白题目,之后的是斐波那契数列爆数据范围了,最后的硬核错误是边数的数组范围开小了,一直错误,自闭中,就一直去寻找过程是否存在错误,没有去细看数组的范围之类的,最后在考虑重新写的时候,发现了这个硬核错误。以后一定要注意啦!
ac代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const int maxn=30;
int feib_num[maxn];
struct node{
int x;
int y;
int color;
}edge[100100];
void db_Onion()
{
feib_num[0]=0;
feib_num[1]=1;
for(int i=2;i<=maxn;i++)
{
feib_num[i]=feib_num[i-1]+feib_num[i-2];
}
}
int T,n,m;
int far[100001];
int find(int x)
{
if(far[x]==x)
return far[x];
else
return far[x]=find(far[x]);
}
bool merge(int a,int b)
{
int pa=find(a);
int pb=find(b);
if(pa==pb)
return false;
else
{
far[pa]=pb;
return true;
}
}
void init()
{
for(int i=1;i<=n;i++)
far[i]=i;
}
bool cmp1(node a,node b)
{
return a.color>b.color;
}
bool cmp2(node a,node b)
{
return a.color<b.color;
}
int main()
{
db_Onion();
scanf("%d",&T);
int kase=0;
while(T--)
{
scanf("%d%d",&n,&m);
int a,b,c;
int cnt=0;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].color);
}
int cnt1=0,cnt2=0;
int w1=0,w2=0;
init();
sort(edge,edge+m,cmp1);
for(int i=0;i<m;i++)
{
if(merge(edge[i].x,edge[i].y))
{
cnt1++;
if(edge[i].color==1)
w1++;
}
}
if(cnt1!=n-1)
{
printf("Case #%d: No\n",++kase);
continue;
}
init();
sort(edge,edge+m,cmp2);
for(int i=0;i<m;i++)
{
if(merge(edge[i].x,edge[i].y))
{
cnt2++;
if(edge[i].color==1)
w2++;
}
}
// printf("minx: %d maxx:%d\n",w2,w1);
bool flag=false;
if(w1!=-1)
{
for(int i=1;i<maxn;i++)
{
if(feib_num[i]>=w2&&feib_num[i]<=w1)
{
flag=1;
break;
}
}
}
printf("Case #%d: ",++kase);
if(flag)
printf("Yes\n");
else
printf("No\n");
}
}