# 本文件程序为配合教材及学习进度渐进进行,请按照注释分段执行
# 执行时要注意IDE的当前工作过路径,最好每段重启控制器一次,输出结果更准确
# Part1: 通过tf.train.Saver类实现保存和载入神经网络模型
# 执行本段程序时注意当前的工作路径
import tensorflow as tf
v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1")
v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2")
result = v1 + v2
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.save(sess, "Model/model.ckpt")
# Part2: 加载TensorFlow模型的方法
import tensorflow as tf
v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1")
v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2")
result = v1 + v2
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "./Model/model.ckpt") # 注意此处路径前添加"./"
print(sess.run(result)) # [ 3.]
# Part3: 若不希望重复定义计算图上的运算,可直接加载已经持久化的图
import tensorflow as tf
saver = tf.train.import_meta_graph("Model/model.ckpt.meta")
with tf.Session() as sess:
saver.r
model的存储与读取
最新推荐文章于 2025-07-17 15:48:09 发布