Proving Equivalences(强连通分量)

本文探讨了如何通过最小化额外证明来确定一组陈述的等价性,特别是在涉及强连通图和矩阵可逆性的数学证明中。通过对已证明的暗示进行分析,提出了一种有效的方法来计算还需证明的暗示数量,以确保所有陈述的等价性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:已知有n个点,现在有m条边,问最少加几条边使其变为强连通图。

题解:就是求过强连通分量之后,然后找入度为0和出度为0的最大值。

 

Problem Description

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0. 

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 

 

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

 

 

Output

Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 

 

Sample Input

 

2 4 0 3 2 1 2 1 3

 

 

Sample Output

 

4 2

 

 

Source

NWERC 2008

#include<stdio.h>
#include<vector>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 51010
#define N 21010
struct Edge{
	int from,to,nex;
	bool sign;
}edge[maxn<<1];
int head[maxn],edgenum;
int n,m;
void add(int u,int v)
{
	Edge E={u,v,head[u],false};
	edge[edgenum]=E;
	head[u]=edgenum++;
}
int DFN[N],Low[N],Stack[N],top,Time;
int taj;
int Belong[N];
bool Instack[N];
vector<int>bcc[N];
vector<int>G[N];
int du[N];
void init()
{
	memset(head,-1,sizeof(head));
	edgenum=0;
}
void tarjan(int u,int fa)
{
	DFN[u]=Low[u]=++Time;
	Stack[top++]=u;
	Instack[u]=1;
	for(int i=head[u];~i;i=edge[i].nex)
	{
		int v=edge[i].to;
		if(DFN[v]==-1)
		{
			tarjan(v,u);
			Low[u]=min(Low[u],Low[v]);
			if(DFN[u]<Low[v])
			{
				edge[i].sign=1;
			}
		}
		else if(Instack[v]) Low[u]=min(Low[u],DFN[v]);
	}
	if(Low[u]==DFN[u])
	{
		int now;
		taj++;
		bcc[taj].clear();
		do{
			now=Stack[--top];
			Instack[now]=0;
			Belong[now]=taj;
			bcc[taj].push_back(now); 
		}while(now!=u);
	}
}
void suodian()
{
	memset(du,0,sizeof(du));
	for(int i=1;i<=taj;i++) G[i].clear();
	for(int i=0;i<edgenum;i++)
	{
		int u=Belong[edge[i].from],v=Belong[edge[i].to];
		if(u!=v) G[u].push_back(v),du[v]++;
	}
	int w1=0,w2=0;
	if(taj==1)
	{
		printf("0\n");
		return;
	 } 
	for(int i=1;i<=taj;i++)
	{
		if(G[i].size()==0) w1++;
		if(du[i]==0) w2++;
	}
	printf("%d\n",w1>w2?w1:w2);
}
void tarjan_init(int all)
{
	memset(DFN,-1,sizeof(DFN));
	memset(Instack,0,sizeof(Instack));
	top=Time=taj=0;
	for(int i=1;i<=all;i++)
	{
		if(DFN[i]==-1)
		{
			tarjan(i,i);
		}
	}
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
	    init();
	  for(int i=1;i<=m;i++)
	 {
	    	int x,y;
		 scanf("%d%d",&x,&y);
		  add(x,y);
	 }
	 tarjan_init(n);
	 suodian();
   }
   return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值