题目描述 Description
在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。
需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:
(4⊕1)=10*2*3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。
输入描述 Input Description
第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i<N< span>时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。
输出描述 Output Description
只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。
样例输入 Sample Input
4
2 3 5 10
样例输出 Sample Output
710
数据范围及提示 Data Size & Hint
无
#include <cstdio>
#include <iostream>
#define MAXN 105
int main()
{
int A[MAXN];
int f[MAXN][MAXN];
int n, ans;
scanf("%d", &n);
for(int i = 1; i <= n; i++)scanf("%d", &A[i]);
for(int j = 2; j <= n; j++)//聚合的区间长度
for(int i = 1; i <= n; i++)//聚合的区间首位置
for(int k = 2; k <= j; k++)//区间的划分轴位置
f[i][j] = std::max(f[i][j],f[i][k-1]+f[k+i-1>n?k+i-1-n:k+i-1][j-k+1>n?j-k+1-n:j-k+1]
+A[i]*A[i+k-1>n?i+k-1-n:i+k-1]*A[i+j>n?i+j-n:i+j]);
for(int i = 1; i <= n; i++) ans = std::max(ans, f[i][n]);
printf("%d\n", ans);
return 0;
}