神仙CDQ分治%%%
刚听神仙讲完神仙的CDQ分治,顺便做了一道神仙例题
这题,∑i−lastAi\sum i-last_{A_i}∑i−lastAi 显然不好求,考虑转化成
∑i=LRi−preAi[preAi>=L]\sum_{i=L}^{R} i-pre_{A_i} [pre_{A_i}>=L]∑i=LRi−preAi[preAi>=L]
又由于preAi<=ipre_{A_i}<=ipreAi<=i,那么答案也可以直接写成
∑i=1Ri−preAi[preAi>=L]\sum_{i=1}^{R} i-pre_{A_i} [pre_{A_i}>=L]∑i=1Ri−preAi[preAi>=L]
即
∑i−preAi[i<=R][preAi>=L]\sum i-pre_{A_i} [i<=R][pre_{A_i}>=L]∑i−preAi[i<=R][preAi>=L]
i<=R preAi>=L 再加上操作的时间轴ti<=R pre_{A_i}>=L 再加上操作的时间轴ti<=R preAi>=L 再加上操作的时间轴t——
没错,就是三维偏序,CDQ分治!!!
- 对于每个节点,就为(t,i,preAi)(t,i,pre_{A_i})(t,i,preAi),权值为i−preAii-pre_{A_i}i−preAi
- 修改的时候,删除只要把上次的抵消掉即可,即加入(t,i,preAi)(t,i,pre_{A_i})(t,i,preAi),权值为−(i−preAi)-(i-pre_{A_i})−(i−preAi),然后加入新节点就同上
- 对于每次询问,就为(t,r,l)(t,r,l)(t,r,l)
至于维护pre,用set即可,复杂度O(N(log2N)2)O(N(log_2^N)^2)O(N(log2N)2)
Code
#include<bits/stdc++.h>
#define gt() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++)
#define pt(ch) (Top<1000000?St[Top++]=ch:(Out(),St[(Top=0)++]=ch))
#define Out() (fwrite(St,1,Top,stdout))
#define LL unsigned int
using namespace std;
int Top;static char St[1000000],buf[1000000],*p1=buf,*p2=buf;
const int maxn=(1e5)+5;
int N,M,T,Q,P[maxn],cnt;LL Ans[maxn],c[maxn];
set<int>S[maxn];
struct ff{
int x,y,o,f;
inline int val(){return (~f)?(x-y):(y-x);}
}A[maxn<<3],C[maxn<<3];
int Re(){
int ret=0;char ch=gt();
while(ch<'0'||ch>'9') ch=gt();
while(ch>='0'&&ch<='9') ret=ret*10+(ch^'0'),ch=gt();
return ret;
}
void Wri(LL x){if(x>9) Wri(x/10);pt(x%10+'0');}
void Add(int i,int x){while(i<=N) c[i]+=x,i+=i&-i;}
int Get(int i){int Res=0;while(i) Res+=c[i],i^=i&-i;return Res;}
void Merge(int L,int mid,int R){
for(int k=L,i=L,j=mid+1;k<=R;k++) C[k]=(j>R||(i<=mid&&A[i].x<=A[j].x))?A[i++]:A[j++];
for(int k=L;k<=R;k++) A[k]=C[k];
}
void Solve(int L,int R){
if(L>=R) return;
int mid=L+R>>1,i,j;Solve(L,mid),Solve(mid+1,R);
for(i=mid+1,j=L;i<=R;i++)if(A[i].o){
while(j<=mid&&A[j].x<=A[i].x){if(!A[j].o) Add(A[j].y,A[j].val());j++;}
Ans[A[i].o]+=Get(N)-Get(A[i].y-1);
}
for(i=L;i<j;i++) if(!A[i].o) Add(A[i].y,-A[i].val());
Merge(L,mid,R);
}
int main(){
#ifdef hhh
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
N=Re(),Q=Re();
for(int i=1;i<=N;i++){
S[P[i]=Re()].insert(i);
if(S[P[i]].size()>1)
A[++M]=(ff){i,*(--S[P[i]].rbegin()),0,1};
}
while(Q--){
int opt=Re(),x=Re(),y=Re();++T;
if(opt==2){A[++M]=(ff){y,x,++cnt,0};continue;}
auto i=S[P[x]].find(x);int L=0,R=0;
if(i!=S[P[x]].begin()) A[++M]=(ff){x,L=*--i,0,-1},i++;
if(++i!=S[P[x]].end()) A[++M]=(ff){R=*i,x,0,-1};
if(L&&R) A[++M]=(ff){R,L,0,1};
S[P[x]].erase(x);//Del
S[P[x]=y].insert(x),i=S[y].find(x),L=R=0;
if(i!=S[y].begin()) A[++M]=(ff){x,L=*--i,0,1},i++;
if(++i!=S[y].end()) A[++M]=(ff){R=*i,x,0,1};
if(L&&R) A[++M]=(ff){R,L,0,-1};//Insert
}
Solve(1,M);
for(int i=1;i<=cnt;i++) Wri(Ans[i]),pt('\n');
return Out(),0;
}