[Linux] 生产者与消费者模型的C++实现

本文介绍了一种线程安全的生产者消费者模型实现,通过使用互斥锁和条件变量确保生产者与消费者之间的同步和互斥,防止数据竞争,支持并发处理和负载均衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Q:如何保证生产者与消费者的线程安全?

  • A:
    生产者与生产者之间应该具有互斥关系。
    消费之与消费者之间应该具有互斥关系。
    生产者与消费者之间应该具有同步 + 互斥关系。

生产者与消费者模型:一个场所,两种角色,三种关系。(场所:线程安全的队列)
BlockQueuestd::queue<>capacitymutexcond_productcond_consumer
对外提供的接口:QueuePush()QueuePop()

/*
 * 生产者与消费者模型
 */
#include <iostream>
#include <queue>
#include <pthread.h>
class BlockQueue{
    public:
	BlockQueue(int cap = 10):_capacity(cap){
	    pthread_mutex_init(&_mutex, NULL);
	    pthread_cond_init(&_cond_productor, NULL);
	    pthread_cond_init(&_cond_consumer, NULL);
	}
	~BlockQueue(){
	    pthread_mutex_destroy(&_mutex);
	    pthread_cond_destroy(&_cond_productor);
	    pthread_cond_destroy(&_cond_consumer);
	}
	bool QueuePush(int data) {
	    QueueLock();	    //加锁
	    while (QueueIsFull()) { //队列满了
			ProductorWait();    //生产者休眠
	    }
	    _queue.push(data);
	    ConsumerWakeUp();	    //唤醒消费者
	    QueueUnLock();	    //解锁
	    return true;
	}
	bool QueuePop(int *data) {
	    QueueLock();	    //加锁
	    while (QueueIsEmpty()) { //队列空
			ConsumerWait();    //消费者休眠
	    }
	    *data = _queue.front();
	    _queue.pop();
	    ProductorWakeUp();	    //唤醒生产者
	    QueueUnLock();	    //解锁
	    return true;
	}
    private:
	void QueueLock() {
	    pthread_mutex_lock(&_mutex);
	}
	void QueueUnLock() {
	    pthread_mutex_unlock(&_mutex);
	}
	void ProductorWait(){
	    pthread_cond_wait(&_cond_productor, &_mutex);
	}
	void ProductorWakeUp() {
	    pthread_cond_signal(&_cond_productor);
	}
	void ConsumerWait(){
	    pthread_cond_wait(&_cond_consumer, &_mutex);
	}
	void ConsumerWakeUp(){
	    pthread_cond_signal(&_cond_consumer);
	}
	bool QueueIsFull(){
	    return (_queue.size() == _capacity);
	}
	bool QueueIsEmpty(){
	    return _queue.empty();
	}
    private:
	std::queue<int> _queue;
	int _capacity;
	pthread_mutex_t _mutex;
	pthread_cond_t	_cond_productor;
	pthread_cond_t	_cond_consumer;
};

void* thr_consumer (void *arg){
    BlockQueue *q = (BlockQueue*)arg;
    while(1) {
		int  data;
		q->QueuePop(&data);
		std::cout<<"consumer  get data:"<<data<<std::endl;
    }
    return NULL;
}
void* thr_productor(void *arg){
    int i = 0;
    BlockQueue *q = (BlockQueue*)arg;
    while(1) {
		std::cout<<"productor put data:"<<i<<std::endl;
		q->QueuePush(i++);
    }
    return NULL;
}
int main (int argc, char *argv[]){
    pthread_t ctid[4], ptid[4];
    BlockQueue q;
    int ret;

    for(int i = 0; i < 4; i++) {
		ret = pthread_create(&ctid[i], NULL, thr_consumer, (void*)&q);
		if (ret != 0) {
	   	 	std::cout<<"pthread create error\n";
		}
    }
    for(int i = 0; i < 4; i++) {
		ret = pthread_create(&ptid[i], NULL, thr_productor, (void*)&q);
		if (ret != 0) {
		    std::cout<<"pthread create error\n";
		}
    }
    for(int i = 0; i < 4; i++) {
		pthread_join(ctid[i], NULL);
    }
    for(int i = 0; i < 4; i++) {
		pthread_join(ptid[i], NULL);
    }
    return 0;
}

作用:

  1. 解耦合。
  2. 支持并发。
  3. 支持忙闲不均。
#include #include #include #include #include //定义一些常量; //本程序允许的最大临界区数; #define MAX_BUFFER_NUM 10 //秒到微秒的乘法因子; #define INTE_PER_SEC 1000 //本程序允许的生产和消费线程的总数; #define MAX_THREAD_NUM 64 //定义一个结构,记录在测试文件中指定的每一个线程的参数 struct ThreadInfo { int serial; //线程序列号 char entity; //是P还是C double delay; //线程延迟 int thread_request[MAX_THREAD_NUM]; //线程请求队列 int n_request; //请求个数 }; //全局变量的定义 //临界区对象的声明,用于管理缓冲区的互斥访问; int Buffer_Critical[MAX_BUFFER_NUM]; //缓冲区声明,用于存放产品; ThreadInfo Thread_Info[MAX_THREAD_NUM]; //线程信息数组; HANDLE h_Thread[MAX_THREAD_NUM]; //用于存储每个线程句柄的数组; HANDLE empty_semaphore; //一个信号量; HANDLE h_mutex; //一个互斥量; HANDLE h_Semaphore[MAX_THREAD_NUM]; //生产者允许消费者开始消费的信号量; CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM]; DWORD n_Thread = 0; //实际的线程的数目; DWORD n_Buffer_or_Critical; //实际的缓冲区或者临界区的数目; //生产消费及辅助函数的声明 void Produce(void *p); void Consume(void *p); bool IfInOtherRequest(int); int FindProducePositon(); int FindBufferPosition(int); int main(int argc, char **argv) { //声明所需变量; DWORD wait_for_all; ifstream inFile; if (argc!=2) { printf("Usage:%s \n",argv[0]); return 1; } //初始化缓冲区; for(int i=0;i< MAX_BUFFER_NUM;i++) Buffer_Critical[i] = -1; //初始化每个线程的请求队列; for(int j=0;j<MAX_THREAD_NUM;j++) { for(int k=0;k<MAX_THREAD_NUM;k++) Thread_Info[j].thread_request[k] = -1; Thread_Info[j].n_request = 0; } //初始化临界区; for(i =0;i> n_Buffer_or_Critical; inFile.get(); // 读取测试文件中的空格,将文件指针指向下一行; printf("输入文件是:\n"); //回显获得的缓冲区的数目信息; printf("%d \n",(int) n_Buffer_or_Critical); //提取每个线程的信息到相应数据结构中; while(inFile){ inFile >> Thread_Info[n_Thread].serial; inFile >> Thread_Info[n_Thread].entity; inFile >> Thread_Info[n_Thread].delay; char c; inFile.get(c); while(c!='\n'&& !inFile.eof()) { inFile>> Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++]; inFile.get(c); } n_Thread++; } //回显获得的线程信息,便于确认正确性; for(j=0;j<(int) n_Thread;j++) { int Temp_serial = Thread_Info[j].serial; char Temp_entity = Thread_Info[j].entity; double Temp_delay = Thread_Info[j].delay; printf(" \nthread%2d %c %f ",Temp_serial,Temp_entity,Temp_delay); int Temp_request = Thread_Info[j].n_request; for(int k=0;k<Temp_request;k++) printf(" %d ", Thread_Info[j].thread_request[k]); cout<<endl; } printf("\n\n"); //创建在模拟过程中几个必要的信号量 empty_semaphore = CreateSemaphore(NULL,n_Buffer_or_Critical,n_Buffer_or_Critical, "semaphore_for_empty"); h_mutex = CreateMutex(NULL,FALSE,"mutex_for_update"); //下面这个循环用线程的ID号来为相应生产线程的产品读写时所 //使用的同步信号量命名; for(j=0;j<(int)n_Thread;j++) { char lp[]="semaphore_for_produce_"; int temp =j; while(temp){ char c = (char)(temp%10); strcat(lp,&c); temp/=10; } h_Semaphore[j+1]=CreateSemaphore(NULL,0,n_Thread,lp); } //创建生产者消费者线程; for(i =0;i< (int) n_Thread;i++) { if(Thread_Info[i].entity =='P') h_Thread[i]= CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce), &(Thread_Info[i]),0,NULL); else h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume), &(Thread_Info[i]),0,NULL); } //主程序等待各个线程的动作结束; wait_for_all = WaitForMultipleObjects(n_Thread,h_Thread,TRUE,-1); printf(" \n \nALL Producer and consumer have finished their work. \n"); printf("Press any key to quit!\n"); _getch(); return 0; } //确认是否还有对同一产品的消费请求未执行; bool IfInOtherRequest(int req) { for(int i=0;i<n_Thread;i++) for(int j=0;j<Thread_Info[i].n_request;j++) if(Thread_Info[i].thread_request[j] == req) return TRUE; return FALSE; } //找出当前可以进行产品生产的空缓冲区位置; int FindProducePosition() { int EmptyPosition; for (int i =0;i<n_Buffer_or_Critical;i++) if(Buffer_Critical[i] == -1) { EmptyPosition = i; //用下面这个特殊值表示本缓冲区正处于被写状态; Buffer_Critical[i] = -2; break; } return EmptyPosition; } //找出当前所需生产者生产的产品的位置; int FindBufferPosition(int ProPos) { int TempPos; for (int i =0 ;iserial; m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC); Sleep(m_delay); //开始请求生产 printf("Producer %2d sends the produce require.\n",m_serial); //互斥访问下一个可用于生产的空临界区,实现写写互斥; wait_for_mutex = WaitForSingleObject(h_mutex,-1); //确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者消费者的同步; //若没有则一直等待,直到消费者进程释放资源为止; wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1); int ProducePos = FindProducePosition(); ReleaseMutex(h_mutex); //生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发; //核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别; printf("Producer %2d begin to produce at position %2d.\n",m_serial,ProducePos); Buffer_Critical[ProducePos] = m_serial; printf("Producer %2d finish producing :\n ",m_serial); printf(" position[ %2d ]:%3d \n\n" ,ProducePos,Buffer_Critical[ProducePos]); //使生产者写的缓冲区可以被多个消费者使用,实现读写同步; ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL); } //消费者进程 void Consume(void * p) { //局部变量声明; DWORD wait_for_semaphore,m_delay; int m_serial,m_requestNum; //消费者的序列号和请求的数目; int m_thread_request[MAX_THREAD_NUM]; //本消费线程的请求队列; //提取本线程的信息到本地; m_serial = ((ThreadInfo*)(p))->serial; m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC); m_requestNum = ((ThreadInfo *)(p))->n_request; for (int i = 0;ithread_request[i]; Sleep(m_delay); //循环进行所需产品的消费 for(i =0;ithread_request[i] =-1; if(!IfInOtherRequest(m_thread_request[i])) { Buffer_Critical[BufferPos] = -1; //-1标记缓冲区为空; printf("Consumer %2d finish consuming %2d:\n ",m_serial,m_thread_request[i]); printf(" position[ %2d ]:%3d \n\n" ,BufferPos,Buffer_Critical[BufferPos]); ReleaseSemaphore(empty_semaphore,1,NULL); } else { printf("Consumer %2d finish consuming product %2d\n\n ",m_serial,m_thread_request[i]); } //离开临界区 LeaveCriticalSection(&PC_Critical[BufferPos]); } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

giturtle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值