设置weblogic404页面 避免暴露weblogic版本信息

在这里插入图片描述
新建一个web项目部署到weblogic

添加weblogic.xml设置上下文根路径为/
在这里插入图片描述
再在web.xml中配置404页面
在这里插入图片描述
将该项目部署到weblogic上 再当我们访问页面404时 则不会暴露weblogic版本信息
在这里插入图片描述

torch.optim.Adam 和 torch.optim.SGD 是 PyTorch 中两种不同的优化器,它们在优化算法和使用方式上存在一些区别。 1. 优化算法: - Adam(Adaptive Moment Estimation)是一种基于梯度的优化算法,它结合了 AdaGrad 和 RMSProp 的优点。它使用动量和自适应学习率来更新参数,能够更快地收敛,并且对于稀疏梯度和噪声较大的问题有较好的表现。 - SGD(Stochastic Gradient Descent)是一种基本的随机梯度下降算法,每次更新参数时仅使用一个样本或一小批样本的梯度。它通过迭代地更新参数来最小化损失函数,适用于大规模数据集和较简单的模型。 2. 学习率调整: - Adam 使用自适应学习率,每个参数都有自己的学习率,根据梯度的历史信息来自动调整学习率。 - SGD 需要手动设置全局学习率,并且可以通过学习率衰减策略进行调整,如按照固定时间表衰减或根据验证集的性能进行衰减。 3. 参数更新方式: - Adam 通过存储每个参数的历史梯度平方的指数衰减平均来计算自适应学习率,使用动量项来加速参数更新。 - SGD 使用每个参数的梯度和学习率来更新参数,可以选择添加动量项来加速收敛。 选择 Adam 还是 SGD 取决于问题的性质和数据集的规模。在大多数情况下,Adam 通常能够更快地收敛,特别是对于复杂的模型和大规模数据集。然而,在某些情况下,SGD 可能会更好地适应局部最优解,并且具有更低的内存使用量。 需要根据具体问题和实验结果来选择合适的优化器。可以尝试不同的优化器并根据模型性能和训练速度进行比较,以确定最佳选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值