Common Subsequence
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 59599 | Accepted: 24845 |
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x
ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
Source
题意:给你两个序列,让你求他们的最长公共子序列的长度。
值得注意的是:公共子序列不是公共子串。
列如:X={3,0,2,5,1,7,6,4},它的子序列可以为{3,5,4}。但其子串为位置相临近的几个元素,如{2,5,1,7}。
最长公共子序列的求法参看网址:
https://blog.youkuaiyun.com/hrn1216/article/details/51534607
思路:假设我们用c[i][j]表示Xi和Yi的最长公共子序列的长度,则有如下递推公式:
题解:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
#define M(a,b) memset(a,b,sizeof(a))
const int MAXN=1005;
int c[MAXN][MAXN];
int main()
{
char s1[MAXN];
char s2[MAXN];
while(~scanf("%s",&s1))
{
scanf("%s",&s2);
int n=strlen(s1);
int m=strlen(s2);
M(c,0);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(s1[i]==s2[j])///字符s1[i]与s2[j]相等,c[i][j]= c[i-1,j-1] + 1。
c[i+1][j+1]=c[i][j]+1;
else
c[i+1][j+1]=max(c[i][j+1],c[i+1][j]);///否则,取c[i-1,j] 和 c[i,j-1]的最大值
}
}
printf("%d\n",c[n][m]);
}
return 0;
}