二叉树

本文详细介绍了树和二叉树这两种基本的数据结构。首先,我们探讨了树的概念、特性以及表示方法,包括其非线性特征和链式存储。接着,深入解析了二叉树的定义、五种结构类型、特殊形式如满二叉树和完全二叉树,以及二叉树的存储结构。最后,讲解了二叉树的遍历方法,包括前序、中序和后序遍历。

目录

1. 树

1.1 树的概念与结构

1.2 树的表示

2. 二叉树

2.1 概念

2.2 二叉树的5种结构

2.3 特殊的二叉树

2.4 二叉树的存储结构

2.5 链式结构的实现


1. 树

  • 1.1 树的概念与结构

树是一种非线性的数据结构,由n(n>=0)个有限结点组成一个具有层次关系的集合。

  • 一棵有N个结点的树有N-1条边
  • 每个节点可有0或多个子结点
  • 每一个非根结点有且只有一个父结点
  • 相关定义
    • 根结点:没有父结点的结点
    • 叶结点:没有子结点的结点
    • 兄弟结点:具有形同父结点的结点
    • 结点的度:一个节点含有的子树的个数
    • 树的度:树中最大的结点的度
    • 树的高度/深度:树种结点的最大层次
    • 森林:由m(m>=0)棵不相交的树的集合
  • 1.2 树的表示

可以使用链表表示,每个结点都保存值、该结点的第一个孩子结点以及同一层的下一个兄弟节点。

采用链式存储。

2. 二叉树

  • 2.1 概念

二叉树要么为空,要么是只有两棵称为左子树和右子树的二叉树的树。

  • 特点
    • 二叉树中每个结点最多有两棵子树
    • 二叉树是有序树
  • 2.2 二叉树的5种结构

    • 空树
    • 没有任何子树的二叉树
    • 只有左子树的二叉树
    • 只有右子树的二叉树
    • 既有左子树又有右子树的二叉树
  • 2.3 特殊的二叉树

    • 满二叉树
      • 每一层的结点数都达到最大值的二叉树
      • K层的二叉树,有(2^k)-1个结点
      • 是一种特殊的完全二叉树,满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树
    • 完全二叉树
      • 在满二叉树的基础上,从后依次删除结点
      •  
  • 2.4 二叉树的存储结构

    •  顺序结构存储
      • 使用数组来存储,只适合表示完全二叉树(否则会有空间浪费)
    • 链式结构存储
      • 用链表来表示一棵二叉树,每个结点都包含数据以及左右指针3部分。
  • 2.5 链式结构的实现

    • 2.5.1 树的遍历
      • 遍历
        • 指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。
      • 遍历方式
        • 深度遍历
          • 前序
            • 根 左子树 右子树
          • 中序
            • 左子树 根 右子树
          • 后序
            • 左子树 右子树 根
          • 详解
        • 广度遍历
    • 2.5.2. 注意
      • 前序、后序便于找根
      • 中序便于切分左右子树
/**
 * 树
 * Author:qqy
 */
public class Tree {
    private static class Node {
        char value;
        //左子树
        Node left;
        //右子树
        Node right;

        Node(char v) {
            this.value = v;
        }
    }
    // 当树是空树,node = null;

    /**
     * 求二叉树结点的个数
     *
     * @param root
     */
    private static int count = 0;

    //遍历思想:定义一个变量用于计数,然后后序遍历
    private static void countByTraversal(Node root) {
        if (root != null) {
            countByTraversal(root.left);
            countByTraversal(root.right);
            count++;
        }
    }

    //递归思想:总的结点个数=左子树结点个数+右子树结点个数+1
    //终止条件:空树 0;一个子结点的树 1(可选)
    private static int count(Node root) {
        if (root == null) {
            return 0;
        } else {
            int left = count(root.left);
            int right = count(root.right);
            return left + right + 1;
        }
    }

    /**
     * 求二叉树叶子节点的个数
     * 递归思想:总的叶结点个数=左子树叶结点个数+右子树叶节点个数
     * 终止条件:空树 0;没有左子树与右子树 1
     *
     * @param root
     * @return
     */
    private static int leafCount(Node root) {
        if(root==null){
            return 0;
        }
        if(root.left==null&&root.right==null){
            return 1;
        }
        return leafCount(root.left)+leafCount(root.right);
    }

    /**
     * 二叉树的高度
     * 递归思想:二叉树的高度=左子树的高度与右子树的高度的最大值+1
     * 终止条件:空树的高度为0
     *
     * @param root
     * @return
     */
    private static int height(Node root) {
        if(root==null){
            return 0;
        }
        return (height(root.left)>height(root.right)?height(root.left):height(root.right))+1;
        //优化
//        return java.lang.Math.max(height(root.left),height(root.right))+1;
    }

    /**
     * 第k层的结点数
     * 递归思想:根结点的第k层的结点数=根结点左子树的第k-1层的结点数+根结点右子树的第k-1层的结点数
     * 终止条件:空树 0;第1层 1
     *
     * @param root
     * @param k
     * @return
     */
    private static int kLevel(Node root, int k) {
        if(root==null){
            return 0;
        }
        if(k==1){
            return 1;
        }
        return kLevel(root.left,k-1)+kLevel(root.right,k-1);
    }

    /**
     * 在二叉树中查找一个值,找到,返回结点;未找到,返回null
     * 递归思想:先查看根结点,没有则查看左子树,还没有查看右子树
     * 终止条件:根结点等于给定值,返回根结点
     * @param root
     * @param v
     * @return
     */
    private static Node find(Node root, char v) {
        if(root==null){
            return null;
        }
        if(root.value==v){
            return root;
        }
        Node r=find(root.left,v);
        if(r!=null){
            return r;
        }
        //根结点和左子树都没有,不论右子树中有没有都返回查找右子树的返回值
        return find(root.right,v);
    }
}

 

### 光流法C++源码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以表示为像素位置和间的一阶导数,即Ex、Ey(空间梯度)和Et(间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别表沿x轴、y轴和间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则表示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通道平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
微信小程序作为腾讯推出的一种轻型应用形式,因其便捷性与高效性,已广泛应用于日常生活中。以下为该平台的主要特性及配套资源说明: 特性方面: 操作便捷,即开即用:用户通过微信内搜索或扫描二维码即可直接使用,无需额外下载安装,减少了对手机存储空间的占用,也简化了使用流程。 多端兼容,统一开发:该平台支持在多种操作系统与设备上运行,开发者无需针对不同平台进行重复适配,可在一个统一的环境中完成开发工作。 功能丰富,接口完善:平台提供了多样化的API接口,便于开发者实现如支付功能、用户身份验证及消息通知等多样化需求。 社交整合,传播高效:小程序深度嵌入微信生态,能有效利用社交关系链,促进用户之间的互动与传播。 开发成本低,周期短:相比传统应用程序,小程序的开发投入更少,开发周期更短,有助于企业快速实现产品上线。 资源内容: “微信小程序-项目源码-原生开发框架-含效果截图示例”这一资料包,提供了完整的项目源码,并基于原生开发方式构建,确保了码的稳定性与可维护性。内容涵盖项目结构、页面设计、功能模块等关键部分,配有详细说明与注释,便于使用者迅速理解并掌握开发方法。此外,还附有多个实际运行效果的截图,帮助用户直观了解功能实现情况,评估其在实际应用中的表现与价值。该资源适用于前端开发人员、技术爱好者及希望拓展业务的机构,具有较高的参考与使用价值。欢迎查阅,助力小程序开发实践。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值