单线程爬虫
单线程的爬虫速度太慢,对应的我们可以使用多线程或者是进程版本来实现 举个例子,抓取糗事百科热门栏目下的十三个url地址的段子内容,地址: https://www.qiushibaike.com/
普通面向对象版本
# coding=utf-8
import requests
from lxml import etree
class QiubaiSpider:
def __init__(self):
self.url_temp = "https://www.qiushibaike.com/8hr/page/{}/"
self.headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X \
10_13_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"}
def get_url_list(self): #获取url列表
return [self.url_temp.format(i) for i in range(1,14)]
def parse_url(self,url): #发送请求,获取响应
print(url)
return requests.get(url,headers=self.headers).content.decode()
def get_content_list(self,html_str): #提取段子
html = etree.HTML(html_str)
div_list = html.xpath("//div[@id='content-left']/div")
content_list = []
for div in div_list:
content = {}
content["content"]=div.xpath(".//div[@class='content']/span/text()")
content_list.append(content)
return content_list
def save_content_list(self,content_list): # 保存数据
pass
def run(self):
#1. url_list
url_list = self.get_url_list()
#2. 遍历,发送请求
for url in url_list:
html_str = self.parse_url(url)
#3. 提取数据
content_list = self.get_content_list(html_str)
#4. 保存
self.save_content_list(content_list)
if __name__ == '__main__':
qiubai = QiubaiSpider()
qiubai.run()
多线程爬虫
但是类似的单线程程序太慢,对应的可以考虑多线程实现,四个函数使用多个线程实现,分别使用三个队列存放数据
代码实现如下:
# coding=utf-8
import requests
from lxml import etree
from queue import Queue
import threading
class Qiubai:
def __init__(self):
self.temp_url = "https://www.qiushibaike.com/8hr/page/{}/"
self.headers= {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X \
10_13_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"}
self.url_queue = Queue()
self.html_queue = Queue()
self.content_list_queue = Queue()
def get_url_list(self):#获取url列表
for i in range(1,14):
self.url_queue.put(self.temp_url.format(i))
def parse_url(self):
while True: #在这里使用,子线程不会结束,把子线程设置为守护线程
url = self.url_queue.get()
print(url)
response = requests.get(url,headers=self.headers)
self.html_queue.put(response.content.decode())
self.url_queue.task_done()
def get_content_list(self): #提取数据
while True:
html_str = self.html_queue.get()
html = etree.HTML(html_str)
div_list = html.xpath("//div[@id='content-left']/div")
content_list = []
for div in div_list:
content = {}
content["content"] = div.xpath(".//div[@class='content']/span/text()")
content_list.append(content)
self.content_list_queue.put(content_list)
self.html_queue.task_done()
def save_content_list(self):
while True:
content_list = self.content_list_queue.get()
pass
self.content_list_queue.task_done()
def run(self):
thread_list = []
#1.url_list
t_url = threading.Thread(target=self.get_url_list)
thread_list.append(t_url)
#2.遍历,发送请求,
for i in range(3): #三个线程发送请求
t_parse = threading.Thread(target=self.parse_url)
thread_list.append(t_parse)
#3.提取数据
t_content = threading.Thread(target=self.get_content_list)
thread_list.append(t_content)
#4.保存
t_save = threading.Thread(target=self.save_content_list)
thread_list.append(t_save)
for t in thread_list:
t.setDaemon(True) #把子线程设置为守护线程,当前这个线程不重要,主线程结束,子线程技术
t.start()
for q in [self.url_queue,self.html_queue,self.content_list_queue]:
q.join() #让主线程阻塞,等待队列的计数为0,
print("主线程结束")
if __name__ == '__main__':
qiubai = Qiubai()
qiubai.run()
上述代码中,put会让队列的计数+1,但是单纯的使用get不会让其-1,需要和task_done同时使用才能够-1;同时task_done不能放在另一个队列的put之前,否则可能会出现数据没有处理完成,程序结束的情况
多进程爬虫
这种方式由于GIL全局锁的存在,多线程在python3下可能只是个摆设,对应的解释器执行其中的内容的时候仅仅是顺序执行,此时我们可以考虑多进程的方式实现,思路和多线程相似,只是对应的api不相同。 具体的实现如下:
# coding=utf-8
import requests
from lxml import etree
import threading
from multiprocessing import Process
from multiprocessing import JoinableQueue as Queue
class QiubaiSpider:
def __init__(self):
self.url_temp = "https://www.qiushibaike.com/8hr/page/{}/"
self.headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"}
self.url_queue = Queue() #保存url
self.html_queue = Queue() #保存html字符串
self.content_queue = Queue() #保存提取到的数据
def get_url_list(self):
for i in range(1,14):
self.url_queue.put(self.url_temp.format(i))
def parse_url(self):
while True:
url = self.url_queue.get()
print(url)
html_str = requests.get(url,headers=self.headers).content.decode()
self.html_queue.put(html_str)
self.url_queue.task_done()
def get_content_list(self):
while True:
html_str = self.html_queue.get()
html = etree.HTML(html_str)
div_list = html.xpath("//div[@id='content-left']/div")
content_list = []
for div in div_list:
content = {}
content["content"]=div.xpath(".//div[@class='content']/span/text()")
content_list.append(content)
self.content_queue.put(content_list)
self.html_queue.task_done()
def save_content_list(self):
while True:
content_list = self.content_queue.get()
pass
self.content_queue.task_done()
def run(self):
process_list = []
#1. url_list
t_url = Process(target=self.get_url_list)
process_list.append(t_url)
#2. 遍历,发送请求
for i in range(5):#创建5个子进程
t_parse = Process(target=self.parse_url)
process_list.append(t_parse)
#3. 提取数据
t_content = Process(target=self.get_content_list)
process_list.append(t_content)
#4. 保存
t_save = Process(target=self.save_content_list)
process_list.append(t_save)
for t in process_list:
t.daemon=True #把进线程设置为守护线程,主进程技术,子进程结束
t.start()
for q in [self.url_queue,self.html_queue,self.content_queue]:
q.join() #让主进程阻塞
print("主进程结束")
if __name__ == '__main__':
qiubai = QiubaiSpider()
qiubai.run()
上述多进程实现的代码中,multiprocessing提供的JoinableQueue可以创建可连接的共享进程队列。和普通的Queue对象一样,队列允许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。 对应的该队列能够和普通队列一样能够调用task_done和join方法