I - Currency Exchange

探讨在存在多个货币兑换点的城市中,如何通过一系列兑换操作使初始资本增值的问题。利用Bellman-Ford算法检测是否存在正权回路,从而判断是否能增加原始货币的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.
Input
The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4.
Output
If Nick can increase his wealth, output YES, in other case output NO to the output file.
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define MAX 105
struct Node
{
    int x,y;
    double rate,cost;
}node[500];
int n,m,s,x1,y1,k;
double dis[MAX],v;//dis表示从开始的货币一直兑换到第i种货币还剩多少钱
bool Bellmam_Ford()
{
    bool flag;
    memset(dis,0,sizeof(0));//这里与普通的Bellmam-Ford算法不同,初始状况每一种货币都为0
    dis[s] = v;
    for(int i = 1;i <= n - 1;i++){
        flag = false;
        for(int j = 0;j < k;j++){//如果兑换一种货币使得钱数量增加则代表是可以松弛的
            if(dis[node[j].y] < (dis[node[j].x] - node[j].cost) * node[j].rate){
                dis[node[j].y] = (dis[node[j].x] - node[j].cost) * node[j].rate;
                flag = true;//松弛成功
            }
        }
        if(!flag) break;
    }
    for(int j = 0;j < k;j++){
        if(dis[node[j].y] < (dis[node[j].x] - node[j].cost) * node[j].rate)
            return true;
    }
    return false;
}
int main()
{
    double rate1,rate2,cost1,cost2;
    while(~scanf("%d%d%d%lf",&n,&m,&s,&v)){
        k = 0;
        for(int i = 0;i < m;i++){
            scanf("%d%d%lf%lf%lf%lf",&x1,&y1,&rate1,&cost1,&rate2,&cost2);
            node[k].x = x1;
            node[k].y = y1;
            node[k].rate = rate1;
            node[k++].cost = cost1;
            node[k].x = y1;
            node[k].y = x1;
            node[k].rate = rate2;
            node[k++].cost = cost2;
        }
        if(Bellmam_Ford()) cout << "YES" << endl;
        else cout << "NO" << endl;
    }
    return 0;
}

这里每一种货币都可以看成一个点,每一种货币兑换成另外一种货币就是两点之间的权值。现在题目要求求s币的金额经过交换最终得到的s币金额数能否增加,换而言之如果图中出现正权回路那么就输出YES,否则就是NO。
本题可以使用Bellmam-Ford算法,虽然Bellmam-Ford算法是用来处理负权边以及处理负环问题的,但是这要将Bellmam-Ford算法的松弛条件改反一下,就可以解决这个问题。如果经过n - 1次松弛之后,还能再次松弛成功那就输出YES,否则就是NO。

内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值