1098 Insertion or Heap Sort (25 分)

本文深入探讨了两种常见的排序算法——插入排序和堆排序的工作原理。通过分析初始整数序列及其部分排序后的状态,文章展示了如何判断所使用的排序方法,并提供了一个示例代码,用于识别排序方法并进行进一步的迭代。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

According to Wikipedia:

Insertion sort iterates, consuming one input element each repetition, and growing a sorted output list. Each iteration, insertion sort removes one element from the input data, finds the location it belongs within the sorted list, and inserts it there. It repeats until no input elements remain.

Heap sort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region. it involves the use of a heap data structure rather than a linear-time search to find the maximum.

Now given the initial sequence of integers, together with a sequence which is a result of several iterations of some sorting method, can you tell which sorting method we are using?

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤100). Then in the next line, N integers are given as the initial sequence. The last line contains the partially sorted sequence of the N numbers. It is assumed that the target sequence is always ascending. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in the first line either "Insertion Sort" or "Heap Sort" to indicate the method used to obtain the partial result. Then run this method for one more iteration and output in the second line the resulting sequence. It is guaranteed that the answer is unique for each test case. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0

Sample Output 1:

Insertion Sort
1 2 3 5 7 8 9 4 6 0

Sample Input 2:

10
3 1 2 8 7 5 9 4 6 0
6 4 5 1 0 3 2 7 8 9

Sample Output 2:

Heap Sort
5 4 3 1 0 2 6 7 8 9

有一个点未成功AC,以后有时间再过来改改

代码如下:


#include<iostream>
#include<string>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
using namespace std;
int n;
int ori[110], now[110];
void Insertion_Sort();
void Heap_Sort();
bool flag = 0;    //1表示插入排序,0表示堆排序
int last;
int main() {
	cin >> n;
	for (int i = 0; i < n; i++) {
		cin >> ori[i];
	}
	for (int i = 0; i < n; i++) {
		cin >> now[i];
	}
	Insertion_Sort();
	if (flag == 0) Heap_Sort();
	return 0;
}
void Insertion_Sort() {
	for (int j = 0; j < n; j++) {
		if (ori[j] > ori[j + 1]) {
			int min = ori[j + 1];
			for (int i = j + 1; i > 0; i--) {
				if (ori[i] < ori[i - 1]) {
					ori[i] = ori[i - 1];
					ori[i - 1] = min;
				}
				else break;
			}
		}
		bool fg = 1;    //1表示两个序列已经相等
		for (int i = 0; i < n; i++) {
			if (ori[i] != now[i]) {
				fg = 0;   //不等,继续排序
				break;
			}
		}
		if (fg == 1) {
			flag = 1;
			printf("Insertion Sort\n");
			j++;
			if (ori[j] > ori[j + 1]) {
				int min = ori[j + 1];
				for (int i = j + 1; i > 0; i--) {
					if (ori[i] < ori[i - 1]) {
						ori[i] = ori[i - 1];
						ori[i - 1] = min;
					}
					else break;
				}
			}
			for (int k = 0; k < n - 1; k++) {
				printf("%d ", ori[k]);
			}
			printf("%d", ori[n - 1]);
			return;
		}
	}
}
void Adjustdown(int root) {
	if (2 * (root + 1) - 1 <= last) {
		if (now[2 * (root + 1) - 1] > now[2 * (root + 1)]) {
			swap(now[root], now[2 * (root + 1) - 1]);
			Adjustdown(2 * (root + 1) - 1);
			return;
		}
		if (now[2 * (root + 1) - 1] < now[2 * (root + 1)]) {
			swap(now[root], now[2 * (root + 1)]);
			Adjustdown(2 * (root + 1));
			return;
		}
	}
	else {
		if (now[root] > now[root + 1])
			swap(now[root], now[root + 1]);
		return;
	}
}
void Heap_Sort() {
	printf("Heap Sort\n");
	for (int i = 1; i < n; i++) {
		if (now[i] > now[0]) {
			last = i - 1;
			break;
		}
	}
	Adjustdown(0);
	for (int k = 0; k < n - 1; k++) {
		printf("%d ", now[k]);
	}
	printf("%d", now[n - 1]);
	return;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值