计算智能--遗传算法

一、算法原理
1.种群(Population):种群是指用遗传算法求解问题时, 初始给定的多个解的集合。遗传算法的求解过程是从这个子集开始的。
个体(Individual):个体是指种群中的单个元素,它通常由一个用于描述其基本遗传结构的数据结构来表示。例如,可以用0、1组成的长度为l的串来表示个体。
2。染色体(Chromosome):染色体是指对个体进行编码后所得到的编码串。染色体中的每1位称为基因,染色体上由若干个基因构成的一个有效信息段称为基因组。
适应度(Fitness)函数:适应度函数是一种用来对种群中各个个体的环境适应性进行度量的函数。其函数值是遗传算法实现优胜劣汰的主要依据。
3.遗传操作(Genetic Operator):遗传操作是指作用于种群而产生新的种群的操作。标准的遗传操作包括以下3种基本形式:选择(Selection) 、杂交(Crosssover) 、变异(Mutation)。
遗传算法通过在计算机上模拟生物的进化过程和基因的操作(选择、 交叉、变异)进行实现。

二、算法步骤
基本遗传算法的基本步骤是:
1、随机产生种群,
2、用轮盘赌策略确定个体的适应度,判断是否符合优化准则,若符合,输出最佳个体及其最优解,结束,否则,进行下一步
3、依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体被淘汰
4、按照一定的交叉概率和交叉方法,生成新的个体
5、按照一定的变异概率和变异方法,生成新的个体
6、由交叉和变异产生新一代种群,返回步骤2
在这里插入图片描述
三、算法代码

遗传代码:

% Optimizing a function using Simple Genetic Algorithm with elitist preserved
%Max f(x1,x2)=100*(x1x1-x2).2+(1-x1).2; -2.0480<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值