#include<iostream>
using namespace std;
const int M = 1000;
int raod[M][M];
int distance1[M];
bool judge[M];
int judgemin(int n) //找到离已经连好了的村庄最短距离的村庄的标号
{
int m = 1000000; int k = -1;
for (int i = 1; i <= n; i++) {
if (!judge[i] && distance1[i] < m) {
m = distance1[i], k = i;
}
}
return k;
}
int main() {
int n;
while (cin >> n) {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
cin >> raod[i][j];
memset(judge, false, sizeof(judge));
for (int i = 1; i <= n; i++)
distance1[i] = raod[1][i];
judge[1] = true;
int sum = 0;
for (int i = 1; i <= n; i++)//找出n-1条最小边
{
int k = judgemin(n);
judge[k] = true;//找到一个马上标记,并且加上权值
sum += distance1[k];
for (int j = 1; j <= n; j++)//找到一个新的点,马上更新最小距离
{
if (raod[k][j] < distance1[j])
{
distance1[j] = raod[k][j];
}
}
}
cout << sum << endl;
system("pause");
}
return 0;
}
POJ - 1789 prim算法的应用
套用一下上面模板
题意大概是这样的:用一个7位的string代表一个编号,两个编号之间的distance代表这两个编号之间不同字母的个数。一个编号只能由另一个编号“衍生”出来,代价是这两个编号之间相应的distance,现在要找出一个“衍生”方案,使得总代价最小,也就是distance之和最小。
例如有如下4个编号:
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
显然的,第二,第三和第四编号分别从第一编号衍生出来的代价最小,因为第二,第三和第四编号分别与第一编号只有一个字母是不同的,相应的distance都是1,加起来是3。也就是最小代价为3。
问题可以转化为最小代价生成树的问题。因为每两个结点之间都有路径,所以是完全图。
此题的关键是将问题转化为最小生成树的问题。每一个编号为图的一个顶点,顶点与顶点间的编号差即为这条边的权值,题目所要的就是我们求出最小生成树来。这里我用prim算法来求最小生成树。
#include<iostream>
using namespace std;
int const M = 2000;
char str[M][8];
int raod[M][M];
int distance1[M];
bool judge[M];
int judgemin(int i,int j) {
int k = 0;
for (int t = 0; t < 7; t++)
if (str[i][t] != str[j][t])
k++;
return k;
}
int judgemin(int n) {
int m = 1000000, k = -1;
for (int i = 1; i <= n; i++)
if (!judge[i] && distance1[i] < m)
m = distance1[i], k = i;
return k;
}
int prim(int n) {
memset(judge, false, sizeof(judge));
for (int i = 1; i <= n; i++)
distance1[i] = raod[1][i];
judge[1] = true;
int sum = 0;
for (int i = 1; i <= n; i++)
{
int k = judgemin(n);
judge[k] = true;
sum += distance1[k];
for (int j = 1; j <= n; j++) {
if (raod[k][j] < distance1[j]) {
distance1[j] = raod[k][j];
}
}
}
return sum;
}
int main() {
int n;
while (cin >> n&&n) {
for (int i = 1; i <= n; i++)
cin >> str[i];
for (int i = 1; i <= n - 1; i++)
for (int j = i + 1; j <= n; j++)
raod[i][j] = raod[j][i] = judgemin(i, j);
int sum = prim(n);
cout << "The highest possible quality is 1/" << sum << "." << endl;
}
system("pause");
return 0;
}