Codeforces-987C - Three displays - 动态规划

本文解决了一个选择三个显示器的问题,使显示器的字体大小递增且总租金最小。通过动态规划的方法,利用f[i,k]记录第i个显示器作为第k个显示器的最小花费,并通过迭代更新最小花费。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                        转自: https://blog.youkuaiyun.com/xs18952904/article/details/80504296

真的还有很长的路要走啊!

题目

It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in Zabaikalsky region), wants to rent three displays to highlight an important problem.

There are n displays placed along a road, and the i-th of them can display a text with font size si only. Maria Stepanovna wants to rent such three displays with indices i < j < k that the font size increases if you move along the road in a particular direction. Namely, the condition si < sj < sk should be held.

The rent cost is for the i-th display is ci. Please determine the smallest cost Maria Stepanovna should pay.

Input

The first line contains a single integer n (3 ≤ n ≤ 3 000) — the number of displays.

The second line contains n integers s1 , s2 , … , sn (1 ≤ si ≤ 109 ) — the font sizes on the displays in the order they stand along the road.

The third line contains n integers c1 , c2 , … , cn (1 ≤ ci ≤ 108 ) — the rent costs for each display.

Output

If there are no three displays that satisfy the criteria, print -1. Otherwise print a single integer — the minimum total rent cost of three displays with indices i < j < k such that si < sj < sk.


题意

  给你一个长度为n的序列,每个序列有一个权值sisi和花费cici,让你从中选出3个值,使得i<j<ki<j<ksi<sj<sksi<sj<sk,如果存在输出最小话费,不存在的话输出-1


思路

  因为只用选出三个物品,f[i,k]f[i,k]代表第ii个物品作为选出的三个物品中的第kk个物品的最小花费,显然有:f[i,k]=min(f[j,k1]+c[i])f[i,k]=min(f[j,k−1]+c[i]),其中:j<ij<is[j]<s[i]s[j]<s[i]


实现

#include <bits/stdc++.h>
using namespace std;
const int maxn = 3007, inf = 0x3f3f3f3f;
int f[maxn][4], n, val[maxn], cost[maxn], ans = inf;
int main() {
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) scanf("%d", val + i);
    for (int i = 1; i <= n; i++) scanf("%d", cost + i);
    memset(f, 0x3f, sizeof(f));
    for (int i = 1; i <= n; i++) {
        f[i][1] = cost[i];
        for (int k = 2; k <= 3; k++)
            for (int j = 1; j < i; j++)
                if (val[j] < val[i]) f[i][k] = std::min(f[i][k], f[j][k - 1] + cost[i]);
    }
    for (int i = 1; i <= n; i++) ans = std::min(ans, f[i][3]);
    printf("%d\n", ans == inf ? -1 : ans);
    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值