A - The Unique MST
求次小生成树 直接套板子
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = 100 + 5, maxe = 100 * 100 / 2 + 5, INF = 0x3f3f3f3f;
int n, m, Max[maxn][maxn], pir[maxn];
struct Edge {
int u, v, w;
bool vis;
}edge[maxe];
vector<int> G[maxn];
bool cmp(const Edge &a, const Edge &b) {
return a.w < b.w;
}
int Find(int x) {
if(x == pir[x]) return x;
return pir[x] = Find(pir[x]);
}
int Kruskal() {
sort(edge + 1, edge + m + 1, cmp);
for(int i = 1; i <= n; i ++) {
G[i].clear();
pir[i] = i;
G[i].push_back(i);
}
int cnt = 0, ans = 0;
for(int i = 1; i <= m; i ++) {
int fx = Find(edge[i].u), fy = Find(edge[i].v);
if(cnt == n - 1) break;
if(fx != fy) {
cnt ++;
int len_fx = G[fx].size(), len_fy = G[fy].size();
edge[i].vis = true;
ans += edge[i].w;
for(int j = 0; j < len_fx; j ++) {
for(int k = 0; k < len_fy; k ++) {
Max[G[fx][j]][G[fy][k]] = Max[G[fy][k]][G[fx][j]] = edge[i].w;
}
}
pir[fx] = fy;
for(int j = 0; j < len_fx; j ++)
G[fy].push_back(G[fx][j]);
}
}
if(cnt < n - 1) return INF;
else return ans;
}
int Second_Kruskal(int MST) {
int ans = INF;
for(int i = 1; i <= m; i ++) {
if(!edge[i].vis)
ans = min(ans, MST + edge[i].w - Max[edge[i].u][edge[i].v]);
}
return ans;
}
int main () {
int t;
scanf("%d", &t);
while(t --) {
scanf("%d %d", &n, &m);
for(int i = 1; i <= m; i ++) {
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
edge[i].vis = false;
}
int MST = Kruskal();
int Second_MST = Second_Kruskal(MST);
if(Second_MST == MST)
{
printf("Not Unique!\n");
}
else
{
printf("%d\n", MST);
}
}
return 0;
}
B - Qin Shi Huang's National Road System
题意懂了,后套板子
改改double
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1000+10,INF=0x3f3f3f3f;
int n,m;
int pre[maxn];
double mincost[maxn];
bool vis[maxn],used[maxn][maxn];
double cost[maxn][maxn],path[maxn][maxn];
struct node{
double x,y,v;
}city[maxn];
void init()
{
memset(pre,-1,sizeof(pre));
memset(path,0,sizeof(path));
memset(vis,false,sizeof(vis));
memset(used,false,sizeof(used));
for(int i=1;i<=n;i++)
mincost[i]=INF;
}
double prim()
{
init();
double res=0;
mincost[1]=0;
while(1)
{
int v=-1;
for(int u=1;u<=n;u++)
if(!vis[u]&&(v==-1||mincost[u]<mincost[v]))
v=u;
if(v==-1)
break;
if(pre[v]!=-1)
{
used[pre[v]][v]=used[v][pre[v]]=true;
for(int u=1;u<=n;u++)
{
if(vis[u])
path[u][v]=path[v][u]=max(path[u][pre[v]],cost[v][pre[v]]);
}
}
vis[v]=true;
res+=mincost[v];
for(int u=1;u<=n;u++)
{
if(mincost[u]>cost[u][v])
{
mincost[u]=cost[u][v];
pre[u]=v;
}
}
}
return res;
}
double sec_mst(double res)
{
double ans=INF;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(!used[i][j])
{
ans=min(ans,res-path[i][j]+cost[i][j]);
}
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n;
init();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cost[i][j]=INF;
for(int i=1; i<=n; i++)
{
scanf("%lf%lf%lf",&city[i].x,&city[i].y,&city[i].v);
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<i; j++)
{
double dis = sqrt((city[i].x-city[j].x)*(city[i].x-city[j].x)+(city[i].y-city[j].y)*(city[i].y-city[j].y));
cost[i][j] = dis;
cost[j][i] = dis;
// cout<<dis<<endl;
}
}
double ans=prim();
// double ans1 = sec_mst(ans);
double ans3 = 0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<i; j++)
{
// cout<<Max[i][j]<<endl;
ans3 = max(ans3,(city[i].v+city[j].v)/(ans-path[i][j]));
}
}
printf("%.2f\n",ans3);
}
return 0;
}
C - ACM Contest and Blackout
题意
n个点,m条边,求最小生成树的值和次小生成树的值。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=105,INF=0x3f3f3f3f;
int n,m;
int pre[maxn],mincost[maxn];
bool vis[maxn],used[maxn][maxn];
int cost[maxn][maxn],path[maxn][maxn];
void init()
{
memset(pre,-1,sizeof(pre));
memset(path,0,sizeof(path));
memset(vis,false,sizeof(vis));
memset(used,false,sizeof(used));
for(int i=1;i<=n;i++)
mincost[i]=INF;
}
int prim()
{
init();
int res=0;
mincost[1]=0;
while(1)
{
int v=-1;
for(int u=1;u<=n;u++)
if(!vis[u]&&(v==-1||mincost[u]<mincost[v]))
v=u;
if(v==-1)
break;
if(pre[v]!=-1)
{
used[pre[v]][v]=used[v][pre[v]]=true;
for(int u=1;u<=n;u++)
{
if(vis[u])
path[u][v]=path[v][u]=max(path[u][pre[v]],cost[v][pre[v]]);
}
}
vis[v]=true;
res+=mincost[v];
for(int u=1;u<=n;u++)
{
if(mincost[u]>cost[u][v])
{
mincost[u]=cost[u][v];
pre[u]=v;
}
}
}
return res;
}
int sec_mst(int res)
{
int ans=INF;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(!used[i][j])
{
ans=min(ans,res-path[i][j]+cost[i][j]);
}
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m;
init();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cost[i][j]=INF;
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
cost[a][b]=cost[b][a]=c;
}
int ans=prim();
printf("%d %d\n",ans,sec_mst(ans));
}
return 0;
}
D - Is There A Second Way Left?
题意:求连通图的最小和次小长度,三种情况:1.不存在最小 2.不存在次小 3.最小和次小不同。
板子ban