文本聚类浅析

本文深入探讨了文本聚类的基本概念,介绍了常见的聚类算法,如K-means和层次聚类,并通过实例展示了如何利用这些算法对大量文本数据进行有效组织和分类,以提升信息检索和理解效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我来介绍一下什么是文本聚类,最简单的来说文本聚类就是从很多文档中把一些 内容相似的文档聚为一类。文本聚类主要是依据著名的聚类假设:同类的文本相似度较大,而不同类的文本相似度较小。作为一种无监督的机器学习方法,聚 类由于不需要训练过程,以及不需要预先对文本手工标注类别,因此具有一定的灵活性和较高的自动化处理能力,已经成为对文本信息进行有效地组织、摘要和导航 的重要手段,为越来越多的研究人员所关注。一个文本表现为一个由文字和标点符号组成的字符串,由字或字符组成词,由词组成短语,进而形成句、段、节、章、 篇的结构。要使计算机能够高效地处理真是文本,就必须找到一种理想的形式化表示方法,这种表示一方面要能够真实地反应文档的内容(主题、领域或结构等), 另一方面,要有对不同文档的区分能力。目前文本表示通常采用向量空间模型(vector space model,VSM)。

VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向 量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的 相似度就可以借助特征向量之间的内积来表示。最简单来说一个文档可以看成是由若干个单词组成的,每个单词转化成权值以后, 每个权值可以看成向量中的一个分量,那么一个文档可以看成是n维空间中的一个向量,这就是向量空间模型的由来。单词对应的权值可以通过TF-IDF加权技 术计算出来。

TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的 其中一份文件的重要程 度。字词的重要性随着它在文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值