来源:《利用Python进行数据分析·第2版》
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。有关DataFrame内部的技术细节远远超出了本书所讨论的范围。
建DataFrame的办法有很多,最常用的一种是直接传入一个由等长列表或NumPy数组组成的字典:
结果DataFrame会自动加上索引(跟Series一样),且全部列会被有序排列:
In [41]: data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
...: 'year': [2000, 2001, 2002, 2001, 2002, 2003],
...: 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
In [42]: frame = pd.DataFrame(data)
In [43]: frame
Out[43]:
state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
5 Nevada 2003 3.2
对于特别大的DataFrame,head方法会选取前五行:
In [45]: frame.head(6)
Out[45]:
state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
5 Nevada 2003 3.2
如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列:
In [46]: pd.DataFrame(data, columns=['year', 'state', 'pop'])
Out[46]:
year state pop
0 2000 Ohio 1.5
1 2001 Ohio 1.7
2 2002 Ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
5 2003 Nevada 3.2
如果传入的列在数据中找不到,就会在结果中产生缺失值:
In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
....: index=['one', 'two', 'three', 'four',
....: 'five', 'six'])
In [49]: frame2
Out[50]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 NaN
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
six 2003 Nevada 3.2 NaN
通过类似字典标记的方式或属性的方式,可以将DataFrame的列获取为一个Series:
In [51]: frame2["year"]
Out[51]:
one 2000
two 2001
three 2002
four 2001
five 2002
six 2003
Name: year, dtype: int64
In [52]: frame2.year
Out[52]:
one 2000
two 2001
three 2002
four 2001
five 2002
six 2003
Name: year, dtype: int64
注意,返回的Series拥有原DataFrame相同的索引,且其name属性也已经被相应地设置好了。
行也可以通过位置或名称的方式进行获取,比如用loc属性(稍后将对此进行详细讲解):
In [53]: frame2.loc["three"]
Out[53]:
year 2002
state Ohio
pop 3.6
debt NaN
Name: three, dtype: object
列可以通过赋值的方式进行修改。例如,我们可以给那个空的"debt"列赋上一个标量值或一组值:
In [56]: frame2["debt"] = 16.5
In [58]: frame2
Out[58]:
year state pop debt
one 2000 Ohio 1.5 16.5
two 2001 Ohio 1.7 16.5
three 2002 Ohio 3.6 16.5
four 2001 Nevada 2.4 16.5
five 2002 Nevada 2.9 16.5
six 2003 Nevada 3.2 16.5
In [59]: frame2["debt"] = np.arange(6.)
In [60]: frame2
Out[60]:
year state pop debt
one 2000 Ohio 1.5 0.0
two 2001 Ohio 1.7 1.0
three 2002 Ohio 3.6 2.0
four 2001 Nevada 2.4 3.0
five 2002 Nevada 2.9 4.0
six 2003 Nevada 3.2 5.0
将列表或数组赋值给某个列时,其长度必须跟DataFrame的长度相匹配。如果赋值的是一个Series,就会精确匹配DataFrame的索引,所有的空位都将被填上缺失值:
In [61]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
In [62]: frame2["debt"] = val
In [63]: frame2
Out[63]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 -1.2
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
six 2003 Nevada 3.2 NaN
为不存在的列赋值会创建出一个新列。关键字del用于删除列。
作为del的例子,我先添加一个新的布尔值的列,state是否为'Ohio':
In [64]: frame2["eastern"] = frame2.state == "Ohio"
In [65]: frame2
Out[65]:
year state pop debt eastern
one 2000 Ohio 1.5 NaN True
two 2001 Ohio 1.7 -1.2 True
three 2002 Ohio 3.6 NaN True
four 2001 Nevada 2.4 -1.5 False
five 2002 Nevada 2.9 -1.7 False
six 2003 Nevada 3.2 NaN False
注意:不能用frame2.eastern创建新的列。
del方法可以用来删除这列:
In [66]: del frame2["eastern"]
In [67]: frame2
Out[67]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 -1.2
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
six 2003 Nevada 3.2 NaN
注意:通过索引方式返回的列只是相应数据的视图而已,并不是副本。因此,对返回的Series所做的任何就地修改全都会反映到源DataFrame上。通过Series的copy方法即可指定复制列。
另一种常见的数据形式是嵌套字典:
如果嵌套字典传给DataFrame,pandas就会被解释为:外层字典的键作为列,内层键则作为行索引:
In [70]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
...: 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
In [71]: frame3 = pd.DataFrame(pop)
In [72]: frame3
Out[72]:
Nevada Ohio
2001 2.4 1.7
2002 2.9 3.6
2000 NaN 1.5
你也可以使用类似NumPy数组的方法,对DataFrame进行转置(交换行和列):
In [73]: frame3.T
Out[73]:
2001 2002 2000
Nevada 2.4 2.9 NaN
Ohio 1.7 3.6 1.5
内层字典的键会被合并、排序以形成最终的索引。如果明确指定了索引,则不会这样:
In [74]: pd.DataFrame(pop, index=[2001, 2002, 2003])
Out[74]:
Nevada Ohio
2001 2.4 1.7
2002 2.9 3.6
2003 NaN NaN
表5-1列出了DataFrame构造函数所能接受的各种数据。
跟Series一样,values属性也会以二维ndarray的形式返回DataFrame中的数据:
In [76]: frame3.values
Out[76]:
array([[2.4, 1.7],
[2.9, 3.6],
[nan, 1.5]])
如果DataFrame各列的数据类型不同,则值数组的dtype就会选用能兼容所有列的数据类型:
In [77]: frame2.values
Out[77]:
array([[2000, 'Ohio', 1.5, nan],
[2001, 'Ohio', 1.7, -1.2],
[2002, 'Ohio', 3.6, nan],
[2001, 'Nevada', 2.4, -1.5],
[2002, 'Nevada', 2.9, -1.7],
[2003, 'Nevada', 3.2, nan]], dtype=object)