弄清Spark、Storm、MapReduce的这几点区别才能学好大数据

本文对比了大数据处理中的三大框架MapReduce、Spark和Storm。MapReduce适用于离线批量处理,时效性较低;Spark在保持MapReduce优点的基础上提升了时效性,适合内存迭代计算和实时数据分析;而Storm则是专门的实时流处理框架,适用于高时效性需求的场景。文章还提及了各框架的开发语言支持和容错特性,旨在帮助初学者清晰理解这些框架的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很多初学者在刚刚接触大数据的时候会有很多疑惑,比如对MapReduce、Storm、Spark三个计算框架的理解经常会产生混乱。

哪一个适合对大量数据进行处理?哪一个又适合对实时的流数据进行处理?又该如何来区分他们呢?

我对比整理了这3个计算框架的基本知识,大家可以了解一下以便对这个3个计算框架有一个整体的认识。
大数据学习群119599574

弄清Spark、Storm、MR的这几点区别才适合学习大数据

MapReduce

  • 分布式离线计算框架

  • 主要适用于大批量的集群任务,由于是批量执行,故时效性偏低。

  • 原生支持 Java 语言开发 MapReduce ,其它语言需要使用到 Hadoop Streaming 来开发。

弄清Spark、Storm、MR的这几点区别才适合学习大数据

Spark

  • Spark 是专为大规模数据处理而设计的快速通用的计算引擎,其是基于内存的迭代式计算。

  • Spark 保留了MapReduce 的优点,而且在时效性上有了很大提高,从而对需要迭代计算和有较高时效性要求的系统提供了很好的支持。

  • 开发人员可以通过Java、Scala或者Python等语言进行数据分析作业编写,并使用超过80种高级运算符。

  • Spark与HDFS全面兼容,同时还能与其它Hadoop组件—包括YARN以及HBase并行协作。

  • Spark可以被用于处理多种作业类型,比如实时数据分析、机器学习与图形处理。多用于能容忍小延时的推荐与计算系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值