题目链接
A. Amr and Music
简单贪心,直接sort一下,先从小的开始选就可以了。
然后直接存答案输出。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered_set>
#define _ABS(x, y) ( x > y ? (x - y) : (y - x) )
#define lowbit(x) ( x&( -x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f3f3f3f3f
#define efs 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
int N, K;
struct node
{
int val, id;
node(int a=0, int v=0):val(a), id(v) {}
friend bool operator < (node e1, node e2) { return e1.val < e2.val; }
} a[105];
int main()
{
scanf("%d%d", &N, &K);
for(int i=1; i<=N; i++) scanf("%d", &a[i].val);
for(int i=1; i<=N; i++) a[i].id = i;
sort(a + 1, a + N + 1);
int ans[105], tot = 0;
for(int i=1; i<=N; i++)
{
if(a[i].val > K) break;
K -= a[i].val;
ans[++tot] = a[i].id;
}
printf("%d\n", tot);
for(int i=1; i<=tot; i++) printf("%d%c", ans[i], i == tot ? '\n' : ' ');
return 0;
}
B. Amr and Pins
感觉考了个高中的圆,绕圆上一点旋转的问题,那么不就是最长的移动中心的距离就是直径长度,然后向上取整即可。不知道为什么正赛的时候那么多人FST。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered_set>
#define _ABS(x, y) ( x > y ? (x - y) : (y - x) )
#define lowbit(x) ( x&( -x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f3f3f3f3f
#define efs 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
double r, x_1, y_1, x_2, y_2;
int main()
{
scanf("%lf%lf%lf%lf%lf", &r, &x_1, &y_1, &x_2, &y_2);
double tmp = sqrt( (x_1 - x_2) * (x_1 - x_2) + (y_1 - y_2) * (y_1 - y_2) );
double d = 2. * r;
printf("%d\n", (int)((tmp + d - efs) / d));
return 0;
}
C. Guess Your Way Out!
是一个很好的对二叉树的认知,我们可以看成一个线段,被分成这么长,然后,我们可以想象成线段树,左右左右的走的话,我们可以去考虑上一步走的是哪一步,初始化我们定义上一步走的是右边。然后如果不同的话,我们就会加上它的另一个方向上的子节点的个数了。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered_set>
#define _ABS(x, y) ( x > y ? (x - y) : (y - x) )
#define lowbit(x) ( x&( -x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f3f3f3f3f
#define efs 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
ll H, N, inv2[55];
int main()
{
inv2[0] = 1;
for(int i=1; i<=50; i++) inv2[i] = inv2[i - 1] * 2LL;
scanf("%lld%lld", &H, &N);
ll depth = H, ans = 0, las_move = 1;
ll L = 1LL, R = inv2[H], mid;
while(L < R)
{
mid = (L + R) >> 1LL;
if(N <= mid)
{
if(las_move)
{
ans += 0;
}
else
{
ans += inv2[depth] - 1LL;
}
R = mid;
las_move = 0;
}
else
{
if(las_move)
{
ans += inv2[depth] - 1LL;
}
else
{
ans += 0;
}
L = mid + 1;
las_move = 1;
}
depth--;
}
ans += H;
printf("%lld\n", ans);
return 0;
}
D. The Maths Lecture
数位DP好题!
这道题感觉比E难了好多,可能是我不擅长写数位DP的缘故吧。
题目问的就是后缀是满足K的倍数的N长度的数有多少个,不能有前导零,并且后缀y不能为0,然后的话,我们这里要保证后缀不能是0的情况,我们需要开一个多维数组,记录后缀0和非后缀0的情况,因为是截然不同的。
然后的话,判断的时候,如果已经确定是合法的,后面直接记录个数即可了,这样的做法是为了避免答案冲突。
样例:
2 7 1000000007
ans:21
My Code:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered_set>
#define _ABS(x, y) ( x > y ? (x - y) : (y - x) )
#define lowbit(x) ( x&( -x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define efs 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
int N, K;
ll mod, dp[1007][105][2], inv[1007]; //后缀要求大于0
ll dfs(int pos, int K_mod, bool zero)
{
if(pos == N)
{
if(!K_mod) return 1;
else return 0;
}
if(dp[pos][K_mod][zero] ^ -1) return dp[pos][K_mod][zero];
ll ans = 0;
int nex_mod = K_mod;
if(pos ^ (N - 1)) ans = dfs(pos + 1, nex_mod, zero) % mod;
for(int i=1; i<=9; i++)
{
nex_mod = (i * inv[pos] + K_mod) % K;
if(!K_mod && pos && !zero) nex_mod = 0; //现在已经是合法的了,再往后不管什么都是可行的了
ans = (ans + dfs(pos + 1, nex_mod, false)) % mod;
}
return dp[pos][K_mod][zero] = ans;
}
inline void solve()
{
memset(dp, -1, sizeof(dp));
inv[0] = 1;
for(int i=1; i<=N; i++) inv[i] = inv[i - 1] * 10 % K;
ll ans = dfs(0, 0, true);
printf("%lld\n", ans);
}
int main()
{
scanf("%d%d%lld", &N, &K, &mod);
solve();
return 0;
}
E. Breaking Good
最短路。
一道最短路裸题了吧,但是最短路的条件变成了两个,首先第一关键字肯定是路径最短,第二关键字是在路径同时满足最短的时候,要求需要维修的路径最少不就是可以了嘛,直接跑堆优化的Dijkstra即可。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered_set>
#define _ABS(x, y) ( x > y ? (x - y) : (y - x) )
#define lowbit(x) ( x&( -x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define efs 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e5 + 7;
int N, M, head[maxN], cnt;
struct Eddge
{
int nex, to, bad;
Eddge(int a=-1, int b=0, int c=0):nex(a), to(b), bad(c) {}
}edge[maxN << 1];
inline void addEddge(int u, int v, int w)
{
edge[cnt] = Eddge(head[u], v, w);
head[u] = cnt++;
}
inline void _add(int u, int v, int w) { addEddge(u, v, w); addEddge(v, u, w); }
pair<int, int> dis[maxN];
bool operator < (pair<int, int> e1, pair<int, int> e2) { return e1.first == e2.first ? e1.second < e2.second : e1.first < e2.first; }
struct node
{
int id; pair<int, int> val;
node(int a=0, pair<int, int> b = MP(0, 0)):id(a), val(b) {}
friend bool operator < (node e1, node e2) { return e1.val.first == e2.val.first ? e1.val.second > e2.val.second : e1.val.first > e2.val.first; }
};
priority_queue<node> Q;
int pre_P[maxN], pre_E[maxN];
bool vis_line[maxN << 1] = {false};
inline void Dijkstra()
{
for(int i=1; i<=N; i++) dis[i] = MP(INF, INF);
Q.push(node(1, MP(0, 0)));
dis[1] = MP(0, 0);
node now;
while(!Q.empty())
{
now = Q.top(); Q.pop();
int u = now.id;
if(dis[u] < now.val) continue;
for(int i=head[u], v; ~i; i=edge[i].nex)
{
v = edge[i].to;
if(dis[v].first > dis[u].first + 1)
{
dis[v].first = dis[u].first + 1;
dis[v].second = dis[u].second + edge[i].bad;
Q.push(node(v, dis[v]));
pre_P[v] = u;
pre_E[v] = i;
}
else if(dis[v].first == dis[u].first + 1 && dis[v].second > dis[u].second + edge[i].bad)
{
dis[v].second = dis[u].second + edge[i].bad;
Q.push(node(v, dis[v]));
pre_P[v] = u;
pre_E[v] = i;
}
}
}
}
struct Out_ans
{
int u, v, w;
Out_ans(int a=0, int b=0, int c=0):u(a), v(b), w(c) {}
};
vector<Out_ans> ans;
inline void init()
{
cnt = 0;
for(int i=1; i<=N; i++) head[i] = -1;
}
int main()
{
scanf("%d%d", &N, &M);
init();
for(int i=1, u, v, w; i<=M; i++)
{
scanf("%d%d%d", &u, &v, &w);
_add(u, v, 1 ^ w);
}
Dijkstra();
int now = N;
while(now ^ 1)
{
if(edge[pre_E[now]].bad) ans.push_back(Out_ans(pre_P[now], now, 1));
vis_line[pre_E[now]] = vis_line[pre_E[now] ^ 1] = true;
now = pre_P[now];
}
for(int u=1; u<=N; u++)
{
for(int i=head[u], v; ~i; i=edge[i].nex)
{
if(vis_line[i] || edge[i].bad == 1) continue;
vis_line[i ^ 1] = true;
v = edge[i].to;
ans.push_back(Out_ans(u, v, 0));
}
}
int len = (int)ans.size();
printf("%d\n", len);
for(int i=0; i<len; i++) printf("%d %d %d\n", ans[i].u, ans[i].v, ans[i].w);
return 0;
}
本文深入解析了五道ACM竞赛题目,涵盖了贪心算法、数位DP、最短路径等核心算法,提供了完整的代码实现与思路分析。

被折叠的 条评论
为什么被折叠?



