YOLOv3配置(Ubuntu版本 附weight资源)

本文详细介绍YOLO实时物体检测系统的安装与配置流程,包括darknet的安装、权重文件的下载及配置,以及如何在CPU和GPU环境下运行检测任务。

(YOLO链接: 网盘地址  密码: qfr4)是最新的实时物体检测系统。将单个神经网络应用于完整图像。该网络将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框由预测的概率加权,与基于分类器的系统相比,我们的模型具有多个优势。它在测试时查看整个图像,因此其预测由图像中的全局上下文提供。与像R-CNN这样的系统需要数千个单个图像的系统不同,它还可以通过单个网络评估来进行预测。

                                              

step 1:安装darknet

git clone https://github.com/pjreddie/darknet

cd darknet

make

step2:下载权重文件

将yolov3.weights放到darknet目录下
wegt方式下载:没外网就是龟速
wget https://pjreddie.com/media/files/yolov3.weights</
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七咔七咔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值