1121 Damn Single(简单模拟)

本文介绍了一种算法挑战,旨在从已知的夫妇ID中找出参加派对的单身人士。通过使用map和vector等数据结构,算法有效地识别并列出了所有单身派对嘉宾的ID。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1121 Damn Single (25 分)

"Damn Single (单身狗)" is the Chinese nickname for someone who is being single. You are supposed to find those who are alone in a big party, so they can be taken care of.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤ 50,000), the total number of couples. Then N lines of the couples follow, each gives a couple of ID's which are 5-digit numbers (i.e. from 00000 to 99999). After the list of couples, there is a positive integer M (≤ 10,000) followed by M ID's of the party guests. The numbers are separated by spaces. It is guaranteed that nobody is having bigamous marriage (重婚) or dangling with more than one companion.

Output Specification:

First print in a line the total number of lonely guests. Then in the next line, print their ID's in increasing order. The numbers must be separated by exactly 1 space, and there must be no extra space at the end of the line.

Sample Input:

3
11111 22222
33333 44444
55555 66666
7
55555 44444 10000 88888 22222 11111 23333

Sample Output:

5
10000 23333 44444 55555 88888

/**
本题题意
    求单身狗,..给出n对夫妇, 以及他们的id
    现在再给出k个数字, 需要求出这k个数字有多少个不是成对的数字(如果有配对的数字, 但是另一个数字不存在
    也属于单身狗).
本题思路:
    要找到单身狗 首先需要知道 数字是否成对的数字, 然后要找到成对的数字, 是否都出现在k个数中
    用map<int, int> m 存储成对的数字, 双向存储, eg: m[1] = 2; m[2] = 1;
    用a[i] 存储出现过的数字 a[m[i]] == 1就表示数字存在
    设定一个vector<int> v存储 k个数,
    最后将满足条件的数字 放入res 中 并排序
遇到的问题:
     1.map<int, int> m 不能初始为0, 处理时 将 0 设为 题中 的 > 5位数的一位数
     (因此本题最好不用map, 单独设定一个数组 存储) 然后初始化数组为 -1, 因为本题可以取到1)
     2.本题需要以5位格式输出 id, 否则有一个测试点出错
     3.vector v(size) 提前赋值后, 不能push_back, 使用 v[i] = 值
**/ 

 

#include<iostream>
#include<algorithm>
#include<map>
#include<vector> 
using namespace std;
const int maxsize = 1e6 + 5000;
int n, a[maxsize];
map<int, int> m;
int main(){
	int p1, p2;
	scanf("%d", &n);
	for(int i = 0; i < n; i++){
		scanf("%d%d", &p1, &p2);
		if(p1 == 0)
			p1 = (int) 1e6 + 2;
		if(p2 == 0)
			p2 = (int) 1e6 + 2;
		m[p1] = p2;
		m[p2] = p1;
	}
	int k, id;
	scanf("%d", &k);
	vector<int> v(k), res;
	for(int i = 0; i < k; i++){
		scanf("%d", &id);
		if(id == 0)
			id = (int) 1e6 + 2;
		a[id] = 1;
		v[i] = id;
	}
	for(int i = 0; i < k; i++){
		if(m[v[i]] == 0 || a[m[v[i]]] != 1){
			res.push_back(v[i]);	
		}
	}
	sort(res.begin(), res.end());
	printf("%d\n", res.size());
	for(int i = 0; i < res.size(); i++){
		printf("%s%05d", i == 0 ? "" : " ", res[i]);
	}
	return 0;
}

 

set实现:

#include<iostream>
#include<algorithm>
#include<set>
#include<vector> 
using namespace std;
const int maxsize = 1e6 + 5000;
int n, a[maxsize], couple[maxsize];
int main(){
	int p1, p2;
	scanf("%d", &n);
	fill(couple, couple + maxsize, -1);
	for(int i = 0; i < n; i++){
		scanf("%d%d", &p1, &p2);
		couple[p1] = p2;
		couple[p2] = p1;
	}
	int k, id;
	scanf("%d", &k);
	vector<int> v(k);
	set<int> res;
	for(int i = 0; i < k; i++){
		scanf("%d", &id);
		a[id] = 1;
		v[i] = id;
	}
	for(int i = 0; i < k; i++){
		if(couple[v[i]] == -1 || a[couple[v[i]]] != 1){
			res.insert(v[i]);
		}
	}
	printf("%d\n", res.size());
	for(auto i = res.begin(); i != res.end(); i++){
		printf("%s%05d", i == res.begin() ? "" : " ", *it);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值