pat甲级1101 Quick Sort(左右数组)(简单模拟)

本文深入探讨了快速排序算法中的经典分区过程,分析了如何确定一个元素是否可以作为枢轴,以及如何计算满足条件的枢轴候选数量。通过具体实例说明了算法的实现步骤,并提供了一段C++代码示例,帮助读者理解并掌握这一关键概念。

1101 Quick Sort (25 分)

There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N=5 and the numbers 1, 3, 2, 4, and 5. We have:

  • 1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
  • 3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
  • 2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
  • and for the similar reason, 4 and 5 could also be the pivot.

Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤10​5​​). Then the next line contains N distinct positive integers no larger than 10​9​​. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:

5
1 3 2 4 5

Sample Output:

3
1 4 5

/**
本题题意 就是判断 给定一组数字 , 判断这这组数字中, 满足左边都比指定数小, 右边的数都比指定的数大,
判断这组数字中有多少个这样的数字
本题思路:
    和P1039类似, 设定left , right数组 分别将每个数左边的最大值, 右边的最小值存入数组中
    for(int i = 1; i < n; i++){
        leftmax[i] = max(leftmax[i - 1], a[i - 1]);
        rightmin[n - i - 1] = min(rightmin[n - i], a[n - i]);
    }
   最后进行遍历, 将满足条件的数 放入 v向量容器中.
**/

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int maxsize = 1e5 + 5;
const int inf = 0x7fffffff;
int n, a[maxsize], leftmax[maxsize], rightmin[maxsize];
vector<int> v;
int main(){
	scanf("%d", &n);
	for(int i = 0; i < n; i++){
		scanf("%d", &a[i]);
	}
	rightmin[n - 1] = inf;
	for(int i = 1; i < n; i++){
		leftmax[i] = max(leftmax[i - 1], a[i - 1]);
		rightmin[n - i - 1] = min(rightmin[n - i], a[n - i]);
	}
	for(int i = 0; i < n; i++){
		if(a[i] < rightmin[i] && a[i] > leftmax[i])
			v.push_back(a[i]);
	}
	printf("%d\n", v.size());
	if(v.size() == 0) //不判断0的特殊情况会出现格式错误 
		printf("\n");
	for(int i = 0; i < v.size(); i++){
		printf("%d", v[i]);
		if(i != v.size() - 1)
			printf(" ");
	}
	return 0;
}

 

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值