hdu1028(dp 或母函数)

本文探讨了一个典型的计数问题,即求解整数N的不同拆分方式的数量,并通过动态规划算法提供了解决方案。文章提供了完整的代码实现,展示了如何通过逐步累加的方式避免重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24446    Accepted Submission(s): 16980


Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input

 
4 10 20
 

Sample Output

 
5 42 627
 

Author
Ignatius.L
 

Recommend
We have carefully selected several similar problems for you:   1171  1085  1398  2152  1709 
 

Statistic |  Submit |  Discuss

题意:给你一个数n,问n有多少总凑法让这些数的和等于n

例如 3=1+1+1=1+2=3 有三种

题解:

1.母函数模板(第二类问题)

2.dp

显然凑数的时候大的数方法会覆盖小的数,那么凑大的数就可以往前找

例如凑5每次加一的话就往4加,加二就往3加

#include <iostream>
using namespace std;
int main (void)
{
int i,j,d[125]={1};//d[0]=1,其他自动初始化为0 
                       
for(i=1;i<121;i++) //从小到大加不会重复,从1往后加 
   for(j=i;j<121;j++) //从能+i的最小的那个数开始+n
       d[j]+=d[j-i];//加到自身就是加d[0] ( =1 ) 
while(cin>>i)
cout<<d[i]<<endl;
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wym_king

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值