hdu2669 Romantic

本文介绍了一个数学问题的解决方法,通过扩展欧几里得算法找出满足特定条件的整数X和Y。当给出两个正整数a和b时,如何找到使得X*a + Y*b = 1成立的X和Y。文章提供了详细的算法实现过程,并附带了C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Romantic

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8837    Accepted Submission(s): 3752


Problem Description
The Sky is Sprite.
The Birds is Fly in the Sky.
The Wind is Wonderful.
Blew Throw the Trees
Trees are Shaking, Leaves are Falling.
Lovers Walk passing, and so are You.
................................Write in English class by yifenfei



Girls are clever and bright. In HDU every girl like math. Every girl like to solve math problem!
Now tell you two nonnegative integer a and b. Find the nonnegative integer X and integer Y to satisfy X*a + Y*b = 1. If no such answer print "sorry" instead.
 

Input
The input contains multiple test cases.
Each case two nonnegative integer a,b (0<a, b<=2^31)
 

Output
output nonnegative integer X and integer Y, if there are more answers than the X smaller one will be choosed. If no answer put "sorry" instead.
 

Sample Input

 
77 5110 4434 79
 
Sample Output

 
2 -3sorry7 -3
 

Author
yifenfei
 

Source

 


题解:

用扩展欧几里得求出x,y,x的最小非负整数即为(x%b+b)%b //想一想为什么?

然后将x代入原式得出y即可。

PS:如果gcd(a,b)不为1,则无解 //根据扩展欧几里得原理


代码:

#include<bits/stdc++.h>
using namespace std;
long long n,m;
long long gcd(long long n,long long m,long long &x,long long &y){
	if(m==0){
		x=1;y=0;
		return n;
	}
	long long ans=gcd(m,n%m,x,y);
	long long t=x;
	x=y;y=t-(n/m)*y;
	return ans;
}
int main(){
	long long x=0,y=0;
	while(~scanf("%lld%lld",&n,&m)){
		if(gcd(n,m,x,y)!=1)printf("sorry\n");
		 else{
		 	x=(x%m+m)%m;
		 	printf("%lld %lld\n",x,(1-(n*x))/m);
		 }
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值