观察者模式
根据应用场景的不同,观察者模式会对应不同的代码实现方式:有同步阻塞的实现方式,也有异步非阻塞的实现方式;有进程内的实现方式,也有跨进程的实现方式。今天我会重点讲解原理、实现、应用场景。下一节课,我会带你一块实现一个基于观察者模式的异步非阻塞的 EventBus,加深你对这个模式的理解。
观察者模式(Observer Design Pattern)也被称为发布订阅模式
在对象之间定义一个一对多的依赖,当一个对象状态改变的时候,所有依赖的对象都会自动收到通知。
观察者模式是一个比较抽象的模式,根据不同的应用场景和需求,有完全不同的实现方式
同步阻塞是最经典的实现方式,主要是为了代码解耦;异步非阻塞除了能实现代码解耦之外,还能提高代码的执行效率;进程间的观察者模式解耦更加彻底,一般是基于消息队列来实现,用来实现不同进程间的被观察者和观察者之间的交互。
基于不同应用场景的不同实现方式
最经典的一种实现方式
public interface Subject {
void registerObserver(Observer observer);
void removeObserver(Observer observer);
void notifyObservers(Message message);
}
public interface Observer {
void update(Message message);
}
public class ConcreteSubject implements Subject {
private List<Observer> observers = new ArrayList<Observer>();
@Override
public void registerObserver(Observer observer) {
observers.add(observer);
}
@Override
public void removeObserver(Observer observer) {
observers.remove(observer);
}
@Override
public void notifyObservers(Message message) {
for (Observer observer : observers) {
observer.update(message);
}
}
}
public class ConcreteObserverOne implements Observer {
@Override
public void update(Message message) {
//TODO: 获取消息通知,执行自己的逻辑...
System.out.println("ConcreteObserverOne is notified.");
}
}
public class ConcreteObserverTwo implements Observer {
@Override
public void update(Message message) {
//TODO: 获取消息通知,执行自己的逻辑...
System.out.println("ConcreteObserverTwo is notified.");
}
}
public class Demo {
public static void main(String[] args) {
ConcreteSubject subject = new ConcreteSubject();
subject.registerObserver(new ConcreteObserverOne());
subject.registerObserver(new ConcreteObserverTwo());
subject.notifyObservers(new Message());
}
}
实际上,上面的代码算是观察者模式的“模板代码”,只能反映大体的设计思路。
同步阻塞实现
假设我们在开发一个 P2P 投资理财系统,用户注册成功之后,我们会给用户发放投资体验金。
public class UserController {
private UserService userService; // 依赖注入
private PromotionService promotionService; // 依赖注入
public Long register(String telephone, String password) {
//省略输入参数的校验代码
//省略userService.register()异常的try-catch代码
long userId = userService.register(telephone, password);
promotionService.issueNewUserExperienceCash(userId);
return userId;
}
}
如果需求频繁变动,比如,用户注册成功之后,不再发放体验金,而是改为发放优惠券,并且还要给用户发送一封“欢迎注册成功”的站内信。这种情况下,我们就需要频繁地修改 register() 函数中的代码,违反开闭原则。而且,如果注册成功之后需要执行的后续操作越来越多,那 register() 函数的逻辑会变得越来越复杂,也就影响到代码的可读性和可维护性。
利用观察者模式,我对上面的代码进行了重构。
public interface RegObserver {
void handleRegSuccess(long userId);
}
public class RegPromotionObserver implements RegObserver {
private PromotionService promotionService; // 依赖注入
@Override
public void handleRegSuccess(long userId) {
promotionService.issueNewUserExperienceCash(userId);
}
}
public class RegNotificationObserver implements RegObserver {
private NotificationService notificationService;
@Override
public void handleRegSuccess(long userId) {
notificationService.sendInboxMessage(userId, "Welcome...");
}
}
public class UserController {
private UserService userService; // 依赖注入
private List<RegObserver> regObservers = new ArrayList<>();
// 一次性设置好,之后也不可能动态的修改
public void setRegObservers(List<RegObserver> observers) {
regObservers.addAll(observers);
}
public Long register(String telephone, String password) {
//省略输入参数的校验代码
//省略userService.register()异常的try-catch代码
long userId = userService.register(telephone, password);
for (RegObserver observer : regObservers) {
observer.handleRegSuccess(userId);
}
return userId;
}
}
当我们需要添加新的观察者的时候,比如,用户注册成功之后,推送用户注册信息给大数据征信系统,基于观察者模式的代码实现,UserController 类的 register() 函数完全不需要修改,只需要再添加一个实现了 RegObserver 接口的类,并且通过 setRegObservers() 函数将它注册到 UserController 类中即可。
不过,你可能会说,当我们把发送体验金替换为发送优惠券的时候,需要修改 RegPromotionObserver 类中 handleRegSuccess() 函数的代码,这还是违反开闭原则呀?你说得没错,不过,相对于 register() 函数来说,handleRegSuccess() 函数的逻辑要简单很多,修改更不容易出错,引入 bug 的风险更低。
设计模式要干的事情就是解耦。创建型模式是将创建和使用代码解耦,结构型模式是将不同功能代码解耦,行为型模式是将不同的行为代码解耦,具体到观察者模式,它是将观察者和被观察者代码解耦。
之前讲到的实现方式,从刚刚的分类方式上来看,它是一种同步阻塞的实现方式。
观察者和被观察者代码在同一个线程内执行,被观察者一直阻塞,直到所有的观察者代码都执行完成之后,才执行后续的代码。
对照上面讲到的用户注册的例子,register() 函数依次调用执行每个观察者的 handleRegSuccess() 函数,等到都执行完成之后,才会返回结果给客户端。
异步非阻塞
如果注册接口是一个调用比较频繁的接口,对性能非常敏感,希望接口的响应时间尽可能短,那我们可以将同步阻塞的实现方式改为异步非阻塞的实现方式,以此来减少响应时间。
具体来讲,当 userService.register() 函数执行完成之后,我们启动一个新的线程来执行观察者的 handleRegSuccess() 函数,这样 userController.register() 函数就不需要等到所有的 handleRegSuccess() 函数都执行完成之后才返回结果给客户端。userController.register() 函数从执行 3 个 SQL 语句才返回,减少到只需要执行 1 个 SQL 语句就返回,响应时间粗略来讲减少为原来的 1/3。
那如何实现一个异步非阻塞的观察者模式呢?简单一点的做法是,在每个 handleRegSuccess() 函数中,创建一个新的线程执行代码。
不过,我们还有更加优雅的实现方式,那就是基于 EventBus 来实现。今天,我们就不展开讲解了。在下一讲中,我会用一节课的时间,借鉴 Google Guava EventBus 框架的设计思想,手把手带你开发一个支持异步非阻塞的 EventBus 框架。它可以复用在任何需要异步非阻塞观察者模式的应用场景中。
刚刚讲到的两个场景,不管是同步阻塞实现方式还是异步非阻塞实现方式,都是进程内的实现方式。
跨进程
如果用户注册成功之后,我们需要发送用户信息给大数据征信系统,而大数据征信系统是一个独立的系统,跟它之间的交互是跨不同进程的,那如何实现一个跨进程的观察者模式呢?
如果大数据征信系统提供了发送用户注册信息的 RPC 接口,我们仍然可以沿用之前的实现思路,在 handleRegSuccess() 函数中调用 RPC 接口来发送数据。但是,我们还有更加优雅、更加常用的一种实现方式,那就是基于消息队列(Message Queue,比如 ActiveMQ)来实现。
当然,这种实现方式也有弊端,那就是需要引入一个新的系统(消息队列),增加了维护成本。不过,它的好处也非常明显。在原来的实现方式中,观察者需要注册到被观察者中,被观察者需要依次遍历观察者来发送消息。而基于消息队列的实现方式,被观察者和观察者解耦更加彻底,两部分的耦合更小。被观察者完全不感知观察者,同理,观察者也完全不感知被观察者。被观察者只管发送消息到消息队列,观察者只管从消息队列中读取消息来执行相应的逻辑。
异步非阻塞除了能实现代码解耦之外,还能提高代码的执行效率;进程间的观察者模式解耦更加彻底,一般是基于消息队列来实现,用来实现不同进程间的被观察者和观察者之间的交互。
异步非阻塞的实现 Google Guava EventBus
简易实现异步非阻塞观察者模式
对于异步非阻塞观察者模式,如果只是实现一个简易版本,不考虑任何通用性、复用性,实际上是非常容易的。
我们有两种实现方式。
其中一种是:在每个 handleRegSuccess() 函数中创建一个新的线程执行代码逻辑;
另一种是:在 UserController 的 register() 函数中使用线程池来执行每个观察者的 handleRegSuccess() 函数。
两种实现方式的具体代码如下所示:
// 第一种实现方式,其他类代码不变,就没有再重复罗列
public class RegPromotionObserver implements RegObserver {
private PromotionService promotionService; // 依赖注入
@Override
public void handleRegSuccess(long userId) {
Thread thread = new Thread(new Runnable() {
@Override
public void run() {
promotionService.issueNewUserExperienceCash(userId);
}
});
thread.start();
}
}
// 第二种实现方式,其他类代码不变,就没有再重复罗列
public class UserController {
private UserService userService; // 依赖注入
private List<RegObserver> regObservers = new ArrayList<>();
private Executor executor;
public UserController(Executor executor) {
this.executor = executor;
}
public void setRegObservers(List<RegObserver> observers) {
regObservers.addAll(observers);
}
public Long register(String telephone, String password) {
//省略输入参数的校验代码
//省略userService.register()异常的try-catch代码
long userId = userService.register(telephone, password);
for (RegObserver observer : regObservers) {
executor.execute(new Runnable() {
@Override
public void run() {
observer.handleRegSuccess(userId);
}
});
}
return userId;
}
}
对于第一种实现方式,频繁地创建和销毁线程比较耗时,并且并发线程数无法控制,创建过多的线程会导致堆栈溢出。
第二种实现方式,尽管利用了线程池解决了第一种实现方式的问题,但线程池、异步执行逻辑都耦合在了 register() 函数中,增加了这部分业务代码的维护成本。
如果我们的需求更加极端一点,需要在同步阻塞和异步非阻塞之间灵活切换,那就要不停地修改 UserController 的代码。除此之外,如果在项目中,不止一个业务模块需要用到异步非阻塞观察者模式,那这样的代码实现也无法做到复用。
我们知道,框架的作用有:隐藏实现细节,降低开发难度,做到代码复用,解耦业务与非业务代码,让程序员聚焦业务开发。针对异步非阻塞观察者模式,我们也可以将它抽象成框架来达到这样的效果,而这个框架就是 EventBus。
EventBus 框架功能需求介绍
EventBus 翻译为“事件总线”,它提供了实现观察者模式的骨架代码。我们可以基于此框架,非常容易地在自己的业务场景中实现观察者模式,不需要从零开始开发。其中,Google Guava EventBus 就是一个比较著名的 EventBus 框架,它不仅仅支持异步非阻塞模式,同时也支持同步阻塞模式
用户注册的例子,我们用 Guava EventBus 重新实现一下
public class UserController {
private UserService userService; // 依赖注入
private EventBus eventBus;
private static final int DEFAULT_EVENTBUS_THREAD_POOL_SIZE = 20;
public UserController() {
//eventBus = new EventBus(); // 同步阻塞模式
eventBus = new AsyncEventBus(Executors.newFixedThreadPool(DEFAULT_EVENTBUS_THREAD_POOL_SIZE)); // 异步非阻塞模式
}
public void setRegObservers(List<Object> observers) {
for (Object observer : observers) {
eventBus.register(observer);
}
}
public Long register(String telephone, String password) {
//省略输入参数的校验代码
//省略userService.register()异常的try-catch代码
long userId = userService.register(telephone, password);
eventBus.post(userId);
return userId;
}
}
public class RegPromotionObserver {
private PromotionService promotionService; // 依赖注入
@Subscribe
public void handleRegSuccess(long userId) {
promotionService.issueNewUserExperienceCash(userId);
}
}
public class RegNotificationObserver {
private NotificationService notificationService;
@Subscribe
public void handleRegSuccess(long userId) {
notificationService.sendInboxMessage(userId, "...");
}
}
利用 EventBus 框架实现的观察者模式,跟从零开始编写的观察者模式相比,从大的流程上来说,实现思路大致一样,都需要定义 Observer,并且通过 register() 函数注册 Observer,也都需要通过调用某个函数(比如,EventBus 中的 post() 函数)来给 Observer 发送消息(在 EventBus 中消息被称作事件 event)。
但在实现细节方面,它们又有些区别。基于 EventBus,我们不需要定义 Observer 接口,任意类型的对象都可以注册到 EventBus 中,通过 @Subscribe 注解来标明类中哪个函数可以接收被观察者发送的消息。
接下来,我们详细地讲一下,Guava EventBus 的几个主要的类和函数。
EventBus、AsyncEventBus
Guava EventBus 对外暴露的所有可调用接口,都封装在 EventBus 类中。其中,EventBus 实现了同步阻塞的观察者模式,AsyncEventBus 继承自 EventBus,提供了异步非阻塞的观察者模式。
具体使用方式如下所示:
EventBus eventBus = new EventBus(); // 同步阻塞模式
EventBus eventBus = new AsyncEventBus(Executors.newFixedThreadPool(8));// 异步阻塞模式
register() 函数
EventBus 类提供了 register() 函数用来注册观察者。具体的函数定义如下所示。它可以接受任何类型(Object)的观察者。而在经典的观察者模式的实现中,register() 函数必须接受实现了同一 Observer 接口的类对象。
public void register(Object object);
unregister() 函数
相对于 register() 函数,unregister() 函数用来从 EventBus 中删除某个观察者。我就不多解释了,具体的函数定义如下所示:
public void unregister(Object object);
post() 函数
EventBus 类提供了 post() 函数,用来给观察者发送消息。具体的函数定义如下所示:
public void post(Object event);
跟经典的观察者模式的不同之处在于,当我们调用 post() 函数发送消息的时候,并非把消息发送给所有的观察者,而是发送给可匹配的观察者。所谓可匹配指的是,能接收的消息类型是发送消息(post 函数定义中的 event)类型的父类。我举个例子来解释一下。
比如,AObserver 能接收的消息类型是 XMsg,BObserver 能接收的消息类型是 YMsg,CObserver 能接收的消息类型是 ZMsg。其中,XMsg 是 YMsg 的父类。当我们如下发送消息的时候,相应能接收到消息的可匹配观察者如下所示:
XMsg xMsg = new XMsg();
YMsg yMsg = new YMsg();
ZMsg zMsg = new ZMsg();
post(xMsg); => AObserver接收到消息
post(yMsg); => AObserver、BObserver接收到消息
post(zMsg); => CObserver接收到消息
你可能会问,每个 Observer 能接收的消息类型是在哪里定义的呢?我们来看下 Guava EventBus 最特别的一个地方,那就是 @Subscribe 注解。
@Subscribe 注解
EventBus 通过 @Subscribe 注解来标明,某个函数能接收哪种类型的消息。具体的使用代码如下所示。在 DObserver 类中,我们通过 @Subscribe 注解了两个函数 f1()、f2()。
public DObserver {
//...省略其他属性和方法...
@Subscribe
public void f1(PMsg event) { //... }
@Subscribe
public void f2(QMsg event) { //... }
}
当通过 register() 函数将 DObserver 类对象注册到 EventBus 的时候,EventBus 会根据 @Subscribe 注解找到 f1() 和 f2(),并且将两个函数能接收的消息类型记录下来(PMsg->f1,QMsg->f2)。当我们通过 post() 函数发送消息(比如 QMsg 消息)的时候,EventBus 会通过之前的记录(QMsg->f2),调用相应的函数(f2)。
手把手实现一个 EventBus 框架
EventBus 中两个核心函数 register() 和 post() 的实现原理。弄懂了它们,基本上就弄懂了整个 EventBus 框架。下面两张图是这两个函数的实现原理图。


最关键的一个数据结构是 Observer 注册表,记录了消息类型和可接收消息函数的对应关系。
当调用 register() 函数注册观察者的时候,EventBus 通过解析 @Subscribe 注解,生成 Observer 注册表。
当调用 post() 函数发送消息的时候,EventBus 通过注册表找到相应的可接收消息的函数,然后通过 Java 的反射语法来动态地创建对象、执行函数。
对于同步阻塞模式,EventBus 在一个线程内依次执行相应的函数。对于异步非阻塞模式,EventBus 通过一个线程池来执行相应的函数。
弄懂了原理,实现起来就简单多了。整个小框架的代码实现包括 5 个类:EventBus、AsyncEventBus、Subscribe、ObserverAction、ObserverRegistry。接下来,我们依次来看下这 5 个类。
1.Subscribe
Subscribe 是一个注解,用于标明观察者中的哪个函数可以接收消息。
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@Beta
public @interface Subscribe {}
2.ObserverAction
ObserverAction 类用来表示 @Subscribe 注解的方法,其中,target 表示观察者类,method 表示方法。它主要用在 ObserverRegistry 观察者注册表中。
public class ObserverAction {
private Object target;
private Method method;
public ObserverAction(Object target, Method method) {
this.target = Preconditions.checkNotNull(target);
this.method = method;
this.method.setAccessible(true);
}
public void execute(Object event) { // event是method方法的参数
try {
method.invoke(target, event);
} catch (InvocationTargetException | IllegalAccessException e) {
e.printStackTrace();
}
}
}
3.ObserverRegistry
ObserverRegistry 类就是前面讲到的 Observer 注册表,是最复杂的一个类,框架中几乎所有的核心逻辑都在这个类中。这个类大量使用了 Java 的反射语法,不过代码整体来说都不难理解,其中,一个比较有技巧的地方是 CopyOnWriteArraySet 的使用。
CopyOnWriteArraySet,顾名思义,在写入数据的时候,会创建一个新的 set,并且将原始数据 clone 到新的 set 中,在新的 set 中写入数据完成之后,再用新的 set 替换老的 set。这样就能保证在写入数据的时候,不影响数据的读取操作,以此来解决读写并发问题。除此之外,CopyOnWriteSet 还通过加锁的方式,避免了并发写冲突。具体的作用你可以去查看一下 CopyOnWriteSet 类的源码,一目了然。
public class ObserverRegistry {
private ConcurrentMap<Class<?>, CopyOnWriteArraySet<ObserverAction>> registry = new ConcurrentHashMap<>();
public void register(Object observer) {
Map<Class<?>, Collection<ObserverAction>> observerActions = findAllObserverActions(observer);
for (Map.Entry<Class<?>, Collection<ObserverAction>> entry : observerActions.entrySet()) {
Class<?> eventType = entry.getKey();
Collection<ObserverAction> eventActions = entry.getValue();
CopyOnWriteArraySet<ObserverAction> registeredEventActions = registry.get(eventType);
if (registeredEventActions == null) {
registry.putIfAbsent(eventType, new CopyOnWriteArraySet<>());
registeredEventActions = registry.get(eventType);
}
registeredEventActions.addAll(eventActions);
}
}
public List<ObserverAction> getMatchedObserverActions(Object event) {
List<ObserverAction> matchedObservers = new ArrayList<>();
Class<?> postedEventType = event.getClass();
for (Map.Entry<Class<?>, CopyOnWriteArraySet<ObserverAction>> entry : registry.entrySet()) {
Class<?> eventType = entry.getKey();
Collection<ObserverAction> eventActions = entry.getValue();
if (postedEventType.isAssignableFrom(eventType)) {
matchedObservers.addAll(eventActions);
}
}
return matchedObservers;
}
private Map<Class<?>, Collection<ObserverAction>> findAllObserverActions(Object observer) {
Map<Class<?>, Collection<ObserverAction>> observerActions = new HashMap<>();
Class<?> clazz = observer.getClass();
for (Method method : getAnnotatedMethods(clazz)) {
Class<?>[] parameterTypes = method.getParameterTypes();
Class<?> eventType = parameterTypes[0];
if (!observerActions.containsKey(eventType)) {
observerActions.put(eventType, new ArrayList<>());
}
observerActions.get(eventType).add(new ObserverAction(observer, method));
}
return observerActions;
}
private List<Method> getAnnotatedMethods(Class<?> clazz) {
List<Method> annotatedMethods = new ArrayList<>();
for (Method method : clazz.getDeclaredMethods()) {
if (method.isAnnotationPresent(Subscribe.class)) {
Class<?>[] parameterTypes = method.getParameterTypes();
Preconditions.checkArgument(parameterTypes.length == 1,
"Method %s has @Subscribe annotation but has %s parameters."
+ "Subscriber methods must have exactly 1 parameter.",
method, parameterTypes.length);
annotatedMethods.add(method);
}
}
return annotatedMethods;
}
}
4.EventBus
EventBus 实现的是阻塞同步的观察者模式。看代码你可能会有些疑问,这明明就用到了线程池 Executor 啊。实际上,MoreExecutors.directExecutor() 是 Google Guava 提供的工具类,看似是多线程,实际上是单线程。之所以要这么实现,主要还是为了跟 AsyncEventBus 统一代码逻辑,做到代码复用。
public class EventBus {
private Executor executor;
private ObserverRegistry registry = new ObserverRegistry();
public EventBus() {
this(MoreExecutors.directExecutor());
}
protected EventBus(Executor executor) {
this.executor = executor;
}
public void register(Object object) {
registry.register(object);
}
public void post(Object event) {
List<ObserverAction> observerActions = registry.getMatchedObserverActions(event);
for (ObserverAction observerAction : observerActions) {
executor.execute(new Runnable() {
@Override
public void run() {
observerAction.execute(event);
}
});
}
}
}
5.AsyncEventBus
有了 EventBus,AsyncEventBus 的实现就非常简单了。为了实现异步非阻塞的观察者模式,它就不能再继续使用 MoreExecutors.directExecutor() 了,而是需要在构造函数中,由调用者注入线程池。
public class AsyncEventBus extends EventBus {
public AsyncEventBus(Executor executor) {
super(executor);
}
}
Google Guava EventBus 的源码,在实现细节方面,相比我们现在的实现,它其实做了很多优化,比如优化了在注册表中查找消息可匹配函数的算法。如果有时间的话,建议你去读一下它的源码。
模板模式
模板方法模式在一个方法中定义一个算法骨架,并将某些步骤推迟到子类中实现。模板方法模式可以让子类在不改变算法整体结构的情况下,重新定义算法中的某些步骤。
这里的“算法”,我们可以理解为广义上的“业务逻辑”,并不特指数据结构和算法中的“算法”。这里的算法骨架就是“模板”,包含算法骨架的方法就是“模板方法”,这也是模板方法模式名字的由来。
经典实现方式:
在模板模式经典的实现中,模板方法定义为 final,可以避免被子类重写。需要子类重写的方法定义为 abstract,可以强迫子类去实现。不过,在实际项目开发中,模板模式的实现比较灵活,以上两点都不是必须的。
templateMethod() 函数定义为 final,是为了避免子类重写它。method1() 和 method2() 定义为 abstract,是为了强迫子类去实现。
public abstract class AbstractClass {
public final void templateMethod() {
//...
method1();
//...
method2();
//...
}
protected abstract void method1();
protected abstract void method2();
}
public class ConcreteClass1 extends AbstractClass {
@Override
protected void method1() {
//...
}
@Override
protected void method2() {
//...
}
}
public class ConcreteClass2 extends AbstractClass {
@Override
protected void method1() {
//...
}
@Override
protected void method2() {
//...
}
}
AbstractClass demo = ConcreteClass1();
demo.templateMethod();
模板模式作用一:复用
模板模式把一个算法中不变的流程抽象到父类的模板方法 templateMethod() 中,将可变的部分 method1()、method2() 留给子类 ContreteClass1 和 ContreteClass2 来实现。所有的子类都可以复用父类中模板方法定义的流程代码。我们通过两个小例子来更直观地体会一下。
1.Java InputStream
Java IO 类库中,有很多类的设计用到了模板模式,比如 InputStream、OutputStream、Reader、Writer。我们拿 InputStream 来举例说明一下。
我把 InputStream 部分相关代码贴在了下面。在代码中,read() 函数是一个模板方法,定义了读取数据的整个流程,并且暴露了一个可以由子类来定制的抽象方法。不过这个方法也被命名为了 read(),只是参数跟模板方法不同。
public abstract class InputStream implements Closeable {
//...省略其他代码...
public int read(byte b[], int off, int len) throws IOException {
if (b == null) {
throw new NullPointerException();
} else if (off < 0 || len < 0 || len > b.length - off) {
throw new IndexOutOfBoundsException();
} else if (len == 0) {
return 0;
}
int c = read();
if (c == -1) {
return -1;
}
b[off] = (byte)c;
int i = 1;
try {
for (; i < len ; i++) {
c = read();
if (c == -1) {
break;
}
b[off + i] = (byte)c;
}
} catch (IOException ee) {
}
return i;
}
public abstract int read() throws IOException;
}
public class ByteArrayInputStream extends InputStream {
//...省略其他代码...
@Override
public synchronized int read() {
return (pos < count) ? (buf[pos++] & 0xff) : -1;
}
}
2.Java AbstractList
在 Java AbstractList 类中,addAll() 函数可以看作模板方法,add() 是子类需要重写的方法,尽管没有声明为 abstract 的,但函数实现直接抛出了 UnsupportedOperationException 异常。前提是,如果子类不重写是不能使用的。
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
boolean modified = false;
for (E e : c) {
add(index++, e);
modified = true;
}
return modified;
}
public void add(int index, E element) {
throw new UnsupportedOperationException();
}
模板模式作用二:扩展
模板模式的第二大作用的是扩展。这里所说的扩展,并不是指代码的扩展性,而是指框架的扩展性,有点类似我们之前讲到的控制反转,你可以结合第 19 节来一块理解。基于这个作用,模板模式常用在框架的开发中,让框架用户可以在不修改框架源码的情况下,定制化框架的功能。我们通过 Junit TestCase、Java Servlet 两个例子来解释一下。
1.Java Servlet
对于 Java Web 项目开发来说,常用的开发框架是 SpringMVC。利用它,我们只需要关注业务代码的编写,底层的原理几乎不会涉及。但是,如果我们抛开这些高级框架来开发 Web 项目,必然会用到 Servlet。实际上,使用比较底层的 Servlet 来开发 Web 项目也不难。我们只需要定义一个继承 HttpServlet 的类,并且重写其中的 doGet() 或 doPost() 方法,来分别处理 get 和 post 请求。具体的代码示例如下所示:
继承HttpServlet
public class HelloServlet extends HttpServlet {
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
this.doPost(req, resp);
}
@Override
protected void doPost(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
resp.getWriter().write("Hello World.");
}
}
web.xml
除此之外,我们还需要在配置文件 web.xml 中做如下配置。Tomcat、Jetty 等 Servlet 容器在启动的时候,会自动加载这个配置文件中的 URL 和 Servlet 之间的映射关系。
<servlet>
<servlet-name>HelloServlet</servlet-name>
<servlet-class>com.xzg.cd.HelloServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>HelloServlet</servlet-name>
<url-pattern>/hello</url-pattern>
</servlet-mapping>
HttpServlet 的 service()
当我们在浏览器中输入网址(比如,http://127.0.0.1:8080/hello )的时候,Servlet 容器会接收到相应的请求,并且根据 URL 和 Servlet 之间的映射关系,找到相应的 Servlet(HelloServlet),然后执行它的 service() 方法。service() 方法定义在父类 HttpServlet 中,它会调用 doGet() 或 doPost() 方法,然后输出数据(“Hello world”)到网页。
我们现在来看,HttpServlet 的 service() 函数长什么样子。
public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException
{
HttpServletRequest request;
HttpServletResponse response;
if (!(req instanceof HttpServletRequest &&
res instanceof HttpServletResponse)) {
throw new ServletException("non-HTTP request or response");
}
request = (HttpServletRequest) req;
response = (HttpServletResponse) res;
service(request, response);
}
protected void service(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
{
String method = req.getMethod();
if (method.equals(METHOD_GET)) {
long lastModified = getLastModified(req);
if (lastModified == -1) {
// servlet doesn't support if-modified-since, no reason
// to go through further expensive logic
doGet(req, resp);
} else {
long ifModifiedSince = req.getDateHeader(HEADER_IFMODSINCE);
if (ifModifiedSince < lastModified) {
// If the servlet mod time is later, call doGet()
// Round down to the nearest second for a proper compare
// A ifModifiedSince of -1 will always be less
maybeSetLastModified(resp, lastModified);
doGet(req, resp);
} else {
resp.setStatus(HttpServletResponse.SC_NOT_MODIFIED);
}
}
} else if (method.equals(METHOD_HEAD)) {
long lastModified = getLastModified(req);
maybeSetLastModified(resp, lastModified);
doHead(req, resp);
} else if (method.equals(METHOD_POST)) {
doPost(req, resp);
} else if (method.equals(METHOD_PUT)) {
doPut(req, resp);
} else if (method.equals(METHOD_DELETE)) {
doDelete(req, resp);
} else if (method.equals(METHOD_OPTIONS)) {
doOptions(req,resp);
} else if (method.equals(METHOD_TRACE)) {
doTrace(req,resp);
} else {
String errMsg = lStrings.getString("http.method_not_implemented");
Object[] errArgs = new Object[1];
errArgs[0] = method;
errMsg = MessageFormat.format(errMsg, errArgs);
resp.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED, errMsg);
}
}
HttpServlet 的 service() 方法就是一个模板方法,它实现了整个 HTTP 请求的执行流程,doGet()、doPost() 是模板中可以由子类来定制的部分。实际上,这就相当于 Servlet 框架提供了一个扩展点(doGet()、doPost() 方法),让框架用户在不用修改 Servlet 框架源码的情况下,将业务代码通过扩展点镶嵌到框架中执行。
2.JUnit TestCase
JUnit 框架也通过模板模式提供了一些功能扩展点(setUp()、tearDown() 等),让框架用户可以在这些扩展点上扩展功能。
在使用 JUnit 测试框架来编写单元测试的时候,我们编写的测试类都要继承框架提供的 TestCase 类。在 TestCase 类中,runBare() 函数是模板方法,它定义了执行测试用例的整体流程:先执行 setUp() 做些准备工作,然后执行 runTest() 运行真正的测试代码,最后执行 tearDown() 做扫尾工作。
TestCase 类的具体代码如下所示。尽管 setUp()、tearDown() 并不是抽象函数,还提供了默认的实现,不强制子类去重新实现,但这部分也是可以在子类中定制的,所以也符合模板模式的定义。
public abstract class TestCase extends Assert implements Test {
public void runBare() throws Throwable {
Throwable exception = null;
setUp();
try {
runTest();
} catch (Throwable running) {
exception = running;
} finally {
try {
tearDown();
} catch (Throwable tearingDown) {
if (exception == null) exception = tearingDown;
}
}
if (exception != null) throw exception;
}
/**
* Sets up the fixture, for example, open a network connection.
* This method is called before a test is executed.
*/
protected void setUp() throws Exception {
}
/**
* Tears down the fixture, for example, close a network connection.
* This method is called after a test is executed.
*/
protected void tearDown() throws Exception {
}
}
回调
复用和扩展是模板模式的两大作用,实际上,还有另外一个技术概念,也能起到跟模板模式相同的作用,那就是回调(Callback)。今天我们今天就来看一下,回调的原理、实现和应用,以及它跟模板模式的区别和联系。
回调的原理解析
相对于普通的函数调用来说,回调是一种双向调用关系。A 类事先注册某个函数 F 到 B 类,A 类在调用 B 类的 P 函数的时候,B 类反过来调用 A 类注册给它的 F 函数。这里的 F 函数就是“回调函数”。A 调用 B,B 反过来又调用 A,这种调用机制就叫作“回调”。
A 类如何将回调函数传递给 B 类呢?不同的编程语言,有不同的实现方法。C 语言可以使用函数指针,Java 则需要使用包裹了回调函数的类对象,我们简称为回调对象。这里我用 Java 语言举例说明一下。代码如下所示:
public interface ICallback {
void methodToCallback();
}
public class BClass {
public void process(ICallback callback) {
//...
callback.methodToCallback();
//...
}
}
public class AClass {
public static void main(String[] args) {
BClass b = new BClass();
b.process(new ICallback() { //回调对象
@Override
public void methodToCallback() {
System.out.println("Call back me.");
}
});
}
}
上面就是 Java 语言中回调的典型代码实现。
除了回调函数之外,BClass 类的 process() 函数中的逻辑都可以复用。如果 ICallback、BClass 类是框架代码,AClass 是使用框架的客户端代码,我们可以通过 ICallback 定制 process() 函数,也就是说,框架因此具有了扩展的能力。
实际上,回调不仅可以应用在代码设计上,在更高层次的架构设计上也比较常用。比如,通过三方支付系统来实现支付功能,用户在发起支付请求之后,一般不会一直阻塞到支付结果返回,而是注册回调接口(类似回调函数,一般是一个回调用的 URL)给三方支付系统,等三方支付系统执行完成之后,将结果通过回调接口返回给用户。
回调可以分为同步回调和异步回调(或者延迟回调)。同步回调指在函数返回之前执行回调函数;异步回调指的是在函数返回之后执行回调函数。上面的代码实际上是同步回调的实现方式,在 process() 函数返回之前,执行完回调函数 methodToCallback()。而上面支付的例子是异步回调的实现方式,发起支付之后不需要等待回调接口被调用就直接返回。从应用场景上来看,同步回调看起来更像模板模式,异步回调看起来更像观察者模式。
应用举例一:JdbcTemplate
Spring 提供了很多 Template 类,比如,JdbcTemplate、RedisTemplate、RestTemplate。尽管都叫作 xxxTemplate,但它们并非基于模板模式来实现的,而是基于回调来实现的,确切地说应该是同步回调。而同步回调从应用场景上很像模板模式,所以,在命名上,这些类使用 Template(模板)这个单词作为后缀。
这些 Template 类的设计思路都很相近,所以,我们只拿其中的 JdbcTemplate 来举例分析一下。对于其他 Template 类,你可以阅读源码自行分析。
在前面的章节中,我们也多次提到,Java 提供了 JDBC 类库来封装不同类型的数据库操作。不过,直接使用 JDBC 来编写操作数据库的代码,还是有点复杂的。比如,下面这段是使用 JDBC 来查询用户信息的代码。
public class JdbcDemo {
public User queryUser(long id) {
Connection conn = null;
Statement stmt = null;
try {
//1.加载驱动
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/demo", "xzg", "xzg");
//2.创建statement类对象,用来执行SQL语句
stmt = conn.createStatement();
//3.ResultSet类,用来存放获取的结果集
String sql = "select * from user where id=" + id;
ResultSet resultSet = stmt.executeQuery(sql);
String eid = null, ename = null, price = null;
while (resultSet.next()) {
User user = new User();
user.setId(resultSet.getLong("id"));
user.setName(resultSet.getString("name"));
user.setTelephone(resultSet.getString("telephone"));
return user;
}
} catch (ClassNotFoundException e) {
// TODO: log...
} catch (SQLException e) {
// TODO: log...
} finally {
if (conn != null)
try {
conn.close();
} catch (SQLException e) {
// TODO: log...
}
if (stmt != null)
try {
stmt.close();
} catch (SQLException e) {
// TODO: log...
}
}
return null;
}
}
queryUser() 函数包含很多流程性质的代码,跟业务无关,比如,加载驱动、创建数据库连接、创建 statement、关闭连接、关闭 statement、处理异常。针对不同的 SQL 执行请求,这些流程性质的代码是相同的、可以复用的,我们不需要每次都重新敲一遍。
针对这个问题,Spring 提供了 JdbcTemplate,对 JDBC 进一步封装,来简化数据库编程。使用 JdbcTemplate 查询用户信息,我们只需要编写跟这个业务有关的代码,其中包括,查询用户的 SQL 语句、查询结果与 User 对象之间的映射关系。其他流程性质的代码都封装在了 JdbcTemplate 类中,不需要我们每次都重新编写。我用 JdbcTemplate 重写了上面的例子,代码简单了很多,如下所示:
public class JdbcTemplateDemo {
private JdbcTemplate jdbcTemplate;
public User queryUser(long id) {
String sql = "select * from user where id="+id;
return jdbcTemplate.query(sql, new UserRowMapper()).get(0);
}
class UserRowMapper implements RowMapper<User> {
public User mapRow(ResultSet rs, int rowNum) throws SQLException {
User user = new User();
user.setId(rs.getLong("id"));
user.setName(rs.getString("name"));
user.setTelephone(rs.getString("telephone"));
return user;
}
}
}
那 JdbcTemplate 底层具体是如何实现的呢?我们来看一下它的源码。因为 JdbcTemplate 代码比较多,我只摘抄了部分相关代码,贴到了下面。其中,JdbcTemplate 通过回调的机制,将不变的执行流程抽离出来,放到模板方法 execute() 中,将可变的部分设计成回调 StatementCallback,由用户来定制。query() 函数是对 execute() 函数的二次封装,让接口用起来更加方便。
@Override
public <T> List<T> query(String sql, RowMapper<T> rowMapper) throws DataAccessException {
return query(sql, new RowMapperResultSetExtractor<T>(rowMapper));
}
@Override
public <T> T query(final String sql, final ResultSetExtractor<T> rse) throws DataAccessException {
Assert.notNull(sql, "SQL must not be null");
Assert.notNull(rse, "ResultSetExtractor must not be null");
if (logger.isDebugEnabled()) {
logger.debug("Executing SQL query [" + sql + "]");
}
class QueryStatementCallback implements StatementCallback<T>, SqlProvider {
@Override
public T doInStatement(Statement stmt) throws SQLException {
ResultSet rs = null;
try {
rs = stmt.executeQuery(sql);
ResultSet rsToUse = rs;
if (nativeJdbcExtractor != null) {
rsToUse = nativeJdbcExtractor.getNativeResultSet(rs);
}
return rse.extractData(rsToUse);
}
finally {
JdbcUtils.closeResultSet(rs);
}
}
@Override
public String getSql() {
return sql;
}
}
return execute(new QueryStatementCallback());
}
@Override
public <T> T execute(StatementCallback<T> action) throws DataAccessException {
Assert.notNull(action, "Callback object must not be null");
Connection con = DataSourceUtils.getConnection(getDataSource());
Statement stmt = null;
try {
Connection conToUse = con;
if (this.nativeJdbcExtractor != null &&
this.nativeJdbcExtractor.isNativeConnectionNecessaryForNativeStatements()) {
conToUse = this.nativeJdbcExtractor.getNativeConnection(con);
}
stmt = conToUse.createStatement();
applyStatementSettings(stmt);
Statement stmtToUse = stmt;
if (this.nativeJdbcExtractor != null) {
stmtToUse = this.nativeJdbcExtractor.getNativeStatement(stmt);
}
T result = action.doInStatement(stmtToUse);
handleWarnings(stmt);
return result;
}
catch (SQLException ex) {
// Release Connection early, to avoid potential connection pool deadlock
// in the case when the exception translator hasn't been initialized yet.
JdbcUtils.closeStatement(stmt);
stmt = null;
DataSourceUtils.releaseConnection(con, getDataSource());
con = null;
throw getExceptionTranslator().translate("StatementCallback", getSql(action), ex);
}
finally {
JdbcUtils.closeStatement(stmt);
DataSourceUtils.releaseConnection(con, getDataSource());
}
}
应用举例二:setClickListener()
在客户端开发中,我们经常给控件注册事件监听器,比如下面这段代码,就是在 Android 应用开发中,给 Button 控件的点击事件注册监听器。
Button button = (Button)findViewById(R.id.button);
button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
System.out.println("I am clicked.");
}
});
从代码结构上来看,事件监听器很像回调,即传递一个包含回调函数(onClick())的对象给另一个函数。从应用场景上来看,它又很像观察者模式,即事先注册观察者(OnClickListener),当用户点击按钮的时候,发送点击事件给观察者,并且执行相应的 onClick() 函数。
我们前面讲到,回调分为同步回调和异步回调。这里的回调算是异步回调,我们往 setOnClickListener() 函数中注册好回调函数之后,并不需要等待回调函数执行。这也印证了我们前面讲的,异步回调比较像观察者模式。
应用举例三:addShutdownHook()
Hook 可以翻译成“钩子”,那它跟 Callback 有什么区别呢?
网上有人认为 Hook 就是 Callback,两者说的是一回事儿,只是表达不同而已。而有人觉得 Hook 是 Callback 的一种应用。Callback 更侧重语法机制的描述,Hook 更加侧重应用场景的描述。我个人比较认可后面一种说法。不过,这个也不重要,我们只需要见了代码能认识,遇到场景会用就可以了。
Hook 比较经典的应用场景是 Tomcat 和 JVM 的 shutdown hook。接下来,我们拿 JVM 来举例说明一下。JVM 提供了 Runtime.addShutdownHook(Thread hook) 方法,可以注册一个 JVM 关闭的 Hook。当应用程序关闭的时候,JVM 会自动调用 Hook 代码。代码示例如下所示:
public class ShutdownHookDemo {
private static class ShutdownHook extends Thread {
public void run() {
System.out.println("I am called during shutting down.");
}
}
public static void main(String[] args) {
Runtime.getRuntime().addShutdownHook(new ShutdownHook());
}
}
addShutdownHook() 的代码实现,如下所示。这里我只给出了部分相关代码。
public class Runtime {
public void addShutdownHook(Thread hook) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(new RuntimePermission("shutdownHooks"));
}
ApplicationShutdownHooks.add(hook);
}
}
class ApplicationShutdownHooks {
/* The set of registered hooks */
private static IdentityHashMap<Thread, Thread> hooks;
static {
hooks = new IdentityHashMap<>();
} catch (IllegalStateException e) {
hooks = null;
}
}
static synchronized void add(Thread hook) {
if(hooks == null)
throw new IllegalStateException("Shutdown in progress");
if (hook.isAlive())
throw new IllegalArgumentException("Hook already running");
if (hooks.containsKey(hook))
throw new IllegalArgumentException("Hook previously registered");
hooks.put(hook, hook);
}
static void runHooks() {
Collection<Thread> threads;
synchronized(ApplicationShutdownHooks.class) {
threads = hooks.keySet();
hooks = null;
}
for (Thread hook : threads) {
hook.start();
}
for (Thread hook : threads) {
while (true) {
try {
hook.join();
break;
} catch (InterruptedException ignored) {
}
}
}
}
}
从代码中我们可以发现,有关 Hook 的逻辑都被封装到 ApplicationShutdownHooks 类中了。当应用程序关闭的时候,JVM 会调用这个类的 runHooks() 方法,创建多个线程,并发地执行多个 Hook。我们在注册完 Hook 之后,并不需要等待 Hook 执行完成,所以,这也算是一种异步回调。
模板模式 VS 回调
从应用场景上来看,同步回调跟模板模式几乎一致。它们都是在一个大的算法骨架中,自由替换其中的某个步骤,起到代码复用和扩展的目的。而异步回调跟模板模式有较大差别,更像是观察者模式。
从代码实现上来看,回调和模板模式完全不同。回调基于组合关系来实现,把一个对象传递给另一个对象,是一种对象之间的关系;模板模式基于继承关系来实现,子类重写父类的抽象方法,是一种类之间的关系。
前面我们也讲到,组合优于继承。实际上,这里也不例外。在代码实现上,回调相对于模板模式会更加灵活,主要体现在下面几点。
- 像 Java 这种只支持单继承的语言,基于模板模式编写的子类,已经继承了一个父类,不再具有继承的能力。
- 回调可以使用匿名类来创建回调对象,可以不用事先定义类;而模板模式针对不同的实现都要定义不同的子类。
- 如果某个类中定义了多个模板方法,每个方法都有对应的抽象方法,那即便我们只用到其中的一个模板方法,子类也必须实现所有的抽象方法。而回调就更加灵活,我们只需要往用到的模板方法中注入回调对象即可。
1801

被折叠的 条评论
为什么被折叠?



