数据结构与算法之美笔记——基础篇(中)——排序:冒泡插入选择快排归并桶计数基数

本文详细介绍了多种排序算法,包括冒泡、插入、选择、快排、归并、桶、计数和基数排序,分析了它们的执行效率、内存消耗和稳定性。还探讨了如何优化快速排序,如选择合适分区点、避免堆栈溢出。最后以Glibc的qsort()函数为例,说明通用高性能排序函数的实现。

排序算法

在这里插入图片描述## 如何分析一个“排序算法”?

排序算法的执行效率

  1. 最好情况、最坏情况、平均情况时间复杂度
  2. 时间复杂度的系数、常数 、低阶
  3. 比较次数和交换(或移动)次数

排序算法的内存消耗

原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

排序算法的稳定性

如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。
稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。

第一类排序:冒泡,插入,选择

冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。
第一,冒泡排序是原地排序算法吗?——原地排序
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。
第二,冒泡排序是稳定的排序算法吗?——稳定
在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。
第三,冒泡排序的时间复杂度是多少?——O(n平方)
最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。
平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n2),所以平均情况下的时间复杂度就是 O(n2)。

插入排序

在这里插入图片描述

一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。
已排序区间和未排序区间。
插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。
第一,插入排序是原地排序算法吗?——原地排序
从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。
第二,插入排序是稳定的排序算法吗?——稳定
在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。
第三,插入排序的时间复杂度是多少?
如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。
如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)。
还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)。

选择排序

实现思路有点类似插入排序,也分已排序区间和未排序区间。
在这里插入图片描述

选择排序每次会从未排序区间中找到 最小 的元素,将其放到已排序区间的末尾。选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置。
选择排序空间复杂度为 O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)。选择排序不稳定。

总结

在这里插入图片描述

第二类排序:快排,归并

这两种排序算法适合大规模的数据排序,比上一节讲的那三种排序算法要更常用。
归并排序和快速排序都用到了分治思想,非常巧妙。我们可以借鉴这个思想,来解决非排序的问题,比如:如何在 O(n) 的时间复杂度内查找一个无序数组中的第 K 大元素? 这就要用到我们今天要讲的内容。

归并排序

如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。
在这里插入图片描述归并排序使用的就是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。
分治是一种解决问题的处理思想,递归是一种编程技巧
第一,归并排序是稳定的排序算法吗?
结合我前面画的那张图和归并排序的伪代码,你应该能发现,归并排序稳不稳定关键要看 merge() 函数,也就是两个有序子数组合并成一个有序数组的那部分代码。
在合并的过程中,如果 A[p…q] 和 A[q+1…r] 之间有值相同的元素,那我们可以像伪代码中那样,先把 A[p…q] 中的元素放入 tmp 数组。这样就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法。
第二,归并排序的时间复杂度是多少?
归并排序涉及递归,时间复杂度的分析稍微有点复杂。我们正好借此机会来学习一下,如何分析递归代码的时间复杂度。
在递归那一节我们讲过,递归的适用场景是,一个问题 a 可以分解为多个子问题 b、c,那求解问题 a 就可以分解为求解问题 b、c。问题 b、c 解决之后,我们再把 b、c 的结果合并成 a 的结果。
如果我们定义求解问题 a 的时间是 T(a),求解问题 b、c 的时间分别是 T(b) 和 T( c),那我们就可以得到这样的递推关系式:
T(a) = T(b) + T© + K
其中 K 等于将两个子问题 b、c 的结果合并成问题 a 的结果所消耗的时间。
不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。
T(n) = 2kT(n/2k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。
从我们的原理分析和伪代码可以看出,归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。
第三,归并排序的空间复杂度是多少?
归并排序的时间复杂度任何情况下都是 O(nlogn),看起来非常优秀。(待会儿你会发现,即便是快速排序,最坏情况下,时间复杂度也是 O(n2)。)但是,归并排序并没有像快排那样,应用广泛,这是为什么呢?因为它有一个致命的“弱点”,那就是归并排序不是原地排序算法。
这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。这一点你应该很容易理解。那我现在问你,归并排序的空间复杂度到底是多少呢?是 O(n),还是 O(nlogn),应该如何分析呢?
如果我们继续按照分析递归时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是 O(nlogn)。不过,类似分析时间复杂度那样来分析空间复杂度,这个思路对吗?
实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。刚刚我们忘记了最重要的一点,那就是,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。

快速排序

快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。

我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。
在这里插入图片描述
根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

如果我们用递推公式来将上面的过程写出来的话,就是这样:

递推公式:
quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)

终止条件:
p >= r
我将递推公式转化成递归代码。跟归并排序一样,我还是用伪代码来实现,你可以翻译成你熟悉的任何语言。

// 快速排序,A 是数组,n 表示数组的大小
quick_sort(A, n) {
quick_sort_c(A, 0, n-1)
}
// 快速排序递归函数,p,r 为下标
quick_sort_c(A, p, r) {
if p >= r then return

q = partition(A, p, r) // 获取分区点
quick_sort_c(A, p, q-1)
quick_sort_c(A, q+1, r)
}
归并排序中有一个 merge() 合并函数,我们这里有一个 partition() 分区函数。partition() 分区函数实际上我们前面已经讲过了,就是随机选择一个元素作为 pivot(一般情况下,可以选择 p 到 r 区间的最后一个元素),然后对 A[p…r] 分区,函数返回 pivot 的下标。

如果我们不考虑空间消耗的话,partition() 分区函数可以写得非常简单。我们申请两个临时数组 X 和 Y,遍历 A[p…r],将小于 pivot 的元素都拷贝到临时数组 X,将大于 pivot 的元素都拷贝到临时数组 Y,最后再将数组 X 和数组 Y 中数据顺序拷贝到 A[p…r]。

归并排序和快速排序的区别

在这里插入图片描述可以发现,归并排序的处理过程是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。
归并merge函数

// 归并排序算法, A 是数组,n 表示数组大小
merge_sort(A, n) {
  merge_sort_c(A, 0, n-1)
}
 
// 递归调用函数
merge_sort_c(A, p, r) {
  // 递归终止条件
  if p >= r  then return
 
  // 取 p 到 r 之间的中间位置 q
  q = (p+r) / 2
  // 分治递归
  merge_sort_c(A, p, q)
  merge_sort_c(A, q+1, r)
  // 将 A[p...q] 和 A[q+1...r] 合并为 A[p...r]
  merge(A[p...r], A[p...q], A[q+1...r])
}
merge(A[p...r], A[p...q], A[q+1...r]) {
  var i := p,j := q+1,k := 0 // 初始化变量 i, j, k
  var tmp := new array[0...r-p] // 申请一个大小跟 A[p...r] 一样的临时数组
  while i<=q AND j<=r do {
    if A[i] <= A[j] {
      tmp[k++] = A[i++] // i++ 等于 i:=i+1
    } else {
      tmp[k++] = A[j++]
    }
  }
  
  // 判断哪个子数组中有剩余的数据
  var start := i,end := q
  if j<=r then start := j, end:=r
  
  // 将剩余的数据拷贝到临时数组 tmp
  while start <= end do {
    tmp[k++] = A[start++]
  }
  
  // 将 tmp 中的数组拷贝回 A[p...r]
  for i:=0 to r-p do {
    A[p+i] = tmp[i]
  }
}

快速排序partition函数

// 快速排序,A 是数组,n 表示数组的大小
quick_sort(A, n) {
  quick_sort_c(A, 0, n-1)
}
// 快速排序递归函数,p,r 为下标
quick_sort_c(A, p, r) {
  if p >= r then return
  
  q = partition(A, p, r) // 获取分区点
  quick_sort_c(A, p, q-1)
  quick_sort_c(A, q+1, r)
}

partition(A, p, r) {
  pivot := A[r]
  i := p
  for j := p to r-1 do {
    if A[j] < pivot {
      swap A[i] with A[j]
      i := i+1
    }
  }
  swap A[i] with A[r]
  return i

第三类排序:桶,计数,基数

这三个算法是非基于比较的排序算法,都不涉及元素之间的比较操作。

桶排序(Bucket sort)

桶排序和计数排序的排序思想是非常相似的,都是针对范围不大的数据,将数据划分成不同的桶来实现排序。
首先,我们来看桶排序。桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
在这里插入图片描述
桶排序比较适合用在外部排序中。所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。

比如说我们有 10GB 的订单数据,我们希望按订单金额(假设金额都是正整数)进行排序,但是我们的内存有限,只有几百 MB,没办法一次性把 10GB 的数据都加载到内存中。这个时候该怎么办呢?

现在我来讲一下,如何借助桶排序的处理思想来解决这个问题。

我们可以先扫描一遍文件,看订单金额所处的数据范围。假设经过扫描之后我们得到,订单金额最小是 1 元,最大是 10 万元。我们将所有订单根据金额划分到 100 个桶里,第一个桶我们存储金额在 1 元到 1000 元之内的订单,第二桶存储金额在 1001 元到 2000 元之内的订单,以此类推。每一个桶对应一个文件,并且按照金额范围的大小顺序编号命名(00,01,02…99)。

理想的情况下,如果订单金额在 1 到 10 万之间均匀分布,那订单会被均匀划分到 100 个文件中,每个小文件中存储大约 100MB 的订单数据,我们就可以将这 100 个小文件依次放到内存中,用快排来排序。等所有文件都排好序之后,我们只需要按照文件编号,从小到大依次读取每个小文件中的订单数据,并将其写入到一个文件中,那这个文件中存储的就是按照金额从小到大排序的订单数据了。

不过,你可能也发现了,订单按照金额在 1 元到 10 万元之间并不一定是均匀分布的 ,所以 10GB 订单数据是无法均匀地被划分到 100 个文件中的。有可能某个金额区间的数据特别多,划分之后对应的文件就会很大,没法一次性读入内存。这又该怎么办呢?

针对这些划分之后还是比较大的文件,我们可以继续划分,比如,订单金额在 1 元到 1000 元之间的比较多,我们就将这个区间继续划分为 10 个小区间,1 元到 100 元,101 元到 200 元,201 元到 300 元…901 元到 1000 元。如果划分之后,101 元到 200 元之间的订单还是太多,无法一次性读入内存,那就继续再划分,直到所有的文件都能读入内存为止。

计数排序(Counting sort)

桶排序和计数排序的排序思想是非常相似的,都是针对范围不大的数据,将数据划分成不同的桶来实现排序。
计数排序其实是桶排序的一种特殊情况。
当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
计数排序的算法思想就是这么简单,跟桶排序非常类似,只是桶的大小粒度不一样。
不过,为什么这个排序算法叫“计数”排序呢?“计数”的含义来自哪里呢?

想弄明白这个问题,我们就要来看计数排序算法的实现方法。我还拿考生那个例子来解释。为了方便说明,我对数据规模做了简化。假设只有 8 个考生,分数在 0 到 5 分之间。这 8 个考生的成绩我们放在一个数组 A[8] 中,它们分别是:2,5,3,0,2,3,0,3。

考生的成绩从 0 到 5 分,我们使用大小为 6 的数组 C[6] 表示桶,其中下标对应分数。不过,C[6] 内存储的并不是考生,而是对应的考生个数。像我刚刚举的那个例子,我们只需要遍历一遍考生分数,就可以得到 C[6] 的值。
在这里插入图片描述

从图中可以看出,分数为 3 分的考生有 3 个,小于 3 分的考生有 4 个,所以,成绩为 3 分的考生在排序之后的有序数组 R[8] 中,会保存下标 4,5,6 的位置。
在这里插入图片描述
那我们如何快速计算出,每个分数的考生在有序数组中对应的存储位置呢?这个处理方法非常巧妙,很不容易想到。

思路是这样的:我们对 C[6] 数组顺序求和,C[6] 存储的数据就变成了下面这样子。C[k] 里存储小于等于分数 k 的考生个数。
在这里插入图片描述

在这里插入图片描述
我们从后到前依次扫描数组 A。比如,当扫描到 3 时,我们可以从数组 C 中取出下标为 3 的值 7,也就是说,到目前为止,包括自己在内,分数小于等于 3 的考生有 7 个,也就是说 3 是数组 R 中的第 7 个元素(也就是数组 R 中下标为 6 的位置)。当 3 放入到数组 R 中后,小于等于 3 的元素就只剩下了 6 个了,所以相应的 C[3] 要减 1,变成 6。

以此类推,当我们扫描到第 2 个分数为 3 的考生的时候,就会把它放入数组 R 中的第 6 个元素的位置(也就是下标为 5 的位置)。当我们扫描完整个数组 A 后,数组 R 内的数据就是按照分数从小到大有序排列的了。

// 计数排序,a 是数组,n 是数组大小。假设数组中存储的都是非负整数。
public void countingSort(int[] a, int n) {
  if (n <= 1) return;
 
  // 查找数组中数据的范围
  int max = a[0];
  for (int i = 1; i < n; ++i) {
    if (max < a[i]) {
      max = a[i];
    }
  }
 
  int[] c = new int[max + 1]; // 申请一个计数数组 c,下标大小 [0,max]
  for (int i = 0; i <= max; ++i) {
    c[i] = 0;
  }
 
  // 计算每个元素的个数,放入 c 中
  for (int i = 0; i < n; ++i) {
    c[a[i]]++;
  }
 
  // 依次累加
  for (int i = 1; i <= max; ++i) {
    c[i] = c[i-1] + c[i];
  }
 
  // 临时数组 r,存储排序之后的结果
  int[] r = new int[n];
  // 计算排序的关键步骤,有点难理解
  for (int i = n - 1; i >= 0; --i) {
    int index = c[a[i]]-1;
    r[index] = a[i];
    c[a[i]]--;
  }
 
  // 将结果拷贝给 a 数组
  for (int i = 0; i < n; ++i) {
    a[i] = r[i];
  }
}

计数排序只能用在数据范围不大的场景中,如果数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。
比如,还是拿考生这个例子。如果考生成绩精确到小数后一位,我们就需要将所有的分数都先乘以 10,转化成整数,然后再放到 9010 个桶内。再比如,如果要排序的数据中有负数,数据的范围是 [-1000, 1000],那我们就需要先对每个数据都加 1000,转化成非负整数。

基数排序(Radix sort)

我们可以把所有的单词补齐到相同长度,位数不够的可以在后面补“0”,因为根据ASCII 值,所有字母都大于“0”,所以补“0”不会影响到原有的大小顺序。这样就可以继续用基数排序了。
基数排序对要排序的数据是有要求的,需要可以分割出独立的“位”来比较,而且位之间有递进的关系,如果 a 数据的高位比 b 数据大,那剩下的低位就不用比较了。除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到 O(n) 了。
基数排序要求数据可以划分成高低位,位之间有递进关系。比较两个数,我们只需要比较高位,高位相同的再比较低位。而且每一位的数据范围不能太大,因为基数排序算法需要借助桶排序或者计数排序来完成每一个位的排序工作。

排序优化:如何实现一个通用的、高性能的排序函数?

那你知道这些排序函数是如何实现的吗?底层都利用了哪种排序算法呢?
基于这些问题,今天我们就来看排序这部分的最后一块内容:如何实现一个通用的、高性能的排序函数?
如果要实现一个通用的、高效率的排序函数,我们应该选择哪种排序算法?我们先回顾一下前面讲过的几种排序算法。

应用场景

在这里插入图片描述

线性排序算法的时间复杂度比较低,适用场景比较特殊。所以如果要写一个通用的排序函数,不能选择线性排序算法

如果对小规模数据进行排序,可以选择时间复杂度是 O(n2) 的算法;如果对大规模数据进行排序,时间复杂度是 O(nlogn) 的算法更加高效。所以,为了兼顾任意规模数据的排序,一般都会首选时间复杂度是 O(nlogn) 的排序算法来实现排序函数。

时间复杂度是 O(nlogn) 的排序算法不止一个,我们已经讲过的有归并排序、快速排序,后面讲堆的时候我们还会讲到堆排序堆排序和快速排序都有比较多的应用,比如 Java 语言采用堆排序实现排序函数,C 语言使用快速排序实现排序函数。

不知道你有没有发现,使用归并排序的情况其实并不多。我们知道,快排在最坏情况下的时间复杂度是 O(n2),而归并排序可以做到平均情况、最坏情况下的时间复杂度都是 O(nlogn),从这点上看起来很诱人,那为什么它还是没能得到“宠信”呢?

还记得我们上一节讲的归并排序的空间复杂度吗?归并排序并不是原地排序算法,空间复杂度是 O(n)。所以,粗略点、夸张点讲,如果要排序 100MB 的数据,除了数据本身占用的内存之外,排序算法还要额外再占用 100MB 的内存空间,空间耗费就翻倍了

前面我们讲到,快速排序比较适合来实现排序函数,但是,我们也知道,快速排序在最坏情况下的时间复杂度是 O(n2),如何来解决这个“复杂度恶化”的问题呢?

如何优化快速排序?

我们先来看下,为什么最坏情况下快速排序的时间复杂度是 O(n2) 呢?我们前面讲过,如果数据原来就是有序的或者接近有序的,每次分区点都选择最后一个数据,那快速排序算法就会变得非常糟糕,时间复杂度就会退化为 O(n2)。实际上,这种 O(n2) 时间复杂度出现的主要原因还是因为我们分区点选的不够合理。
那什么样的分区点是好的分区点呢?或者说如何来选择分区点呢?
最理想的分区点是:被分区点分开的两个分区中,数据的数量差不多。
如果很粗暴地直接选择第一个或者最后一个数据作为分区点,不考虑数据的特点,肯定会出现之前讲的那样,在某些情况下,排序的最坏情况时间复杂度是 O(n2)。为了提高排序算法的性能,我们也要尽可能地让每次分区都比较平均。

分区算法

我这里介绍两个比较常用、比较简单的分区算法,你可以直观地感受一下。

  1. 三数取中法
    我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这 3 个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。但是,如果要排序的数组比较大,那“三数取中”可能就不够了,可能要“五数取中”或者“十数取中”。

  2. 随机法
    随机法就是每次从要排序的区间中,随机选择一个元素作为分区点。这种方法并不能保证每次分区点都选的比较好,但是从概率的角度来看,也不大可能会出现每次分区点都选的很差的情况,所以平均情况下,这样选的分区点是比较好的。时间复杂度退化为最糟糕的 O(n2) 的情况,出现的可能性不大。

好了,我这里也只是抛砖引玉,如果想了解更多寻找分区点的方法,你可以自己课下深入去学习一下。

堆栈溢出

我们知道,快速排序是用递归来实现的。我们在递归那一节讲过,递归要警惕堆栈溢出。为了避免快速排序里,递归过深而堆栈过小,导致堆栈溢出,我们有两种解决办法:
第一种是限制递归深度。一旦递归过深,超过了我们事先设定的阈值,就停止递归。
第二种是通过在堆上模拟实现一个函数调用栈,手动模拟递归压栈、出栈的过程,这样就没有了系统栈大小的限制。

举例分析排序函数

为了让你对如何实现一个排序函数有一个更直观的感受,我拿 Glibc 中的 qsort() 函数举例说明一下。虽说 qsort() 从名字上看,很像是基于快速排序算法实现的,实际上它并不仅仅用了快排这一种算法。

如果你去看源码,你就会发现,qsort() 会优先使用归并排序来排序输入数据,因为归并排序的空间复杂度是 O(n),所以对于小数据量的排序,比如 1KB、2KB 等,归并排序额外需要 1KB、2KB 的内存空间,这个问题不大。现在计算机的内存都挺大的,我们很多时候追求的是速度。还记得我们前面讲过的用空间换时间的技巧吗?这就是一个典型的应用。

但如果数据量太大,就跟我们前面提到的,排序 100MB 的数据,这个时候我们再用归并排序就不合适了。所以,要排序的数据量比较大的时候,qsort() 会改为用快速排序算法来排序

那 qsort() 是如何选择快速排序算法的分区点的呢?如果去看源码,你就会发现,qsort() 选择分区点的方法就是“三数取中法”。是不是也并不复杂?

还有我们前面提到的递归太深会导致堆栈溢出的问题,qsort() 是通过自己实现一个堆上的栈,手动模拟递归来解决的。我们之前在讲递归那一节也讲过,不知道你还有没有印象?

实际上,qsort() 并不仅仅用到了归并排序和快速排序,它还用到了插入排序。 在快速排序的过程中,当要排序的区间中,元素的个数小于等于 4 时,qsort() 就退化为插入排序,不再继续用递归来做快速排序,因为我们前面也讲过,在小规模数据面前,O(n2) 时间复杂度的算法并不一定比 O(nlogn) 的算法执行时间长。我们现在就来分析下这个说法。

我们在讲复杂度分析的时候讲过,算法的性能可以通过时间复杂度来分析,但是,这种复杂度分析是比较偏理论的,如果我们深究的话,实际上时间复杂度并不等于代码实际的运行时间。

时间复杂度代表的是一个增长趋势,如果画成增长曲线图,你会发现 O(n2) 比 O(nlogn) 要陡峭,也就是说增长趋势要更猛一些。但是,我们前面讲过,在大 O 复杂度表示法中,我们会省略低阶、系数和常数,也就是说,O(nlogn) 在没有省略低阶、系数、常数之前可能是 O(knlogn + c),而且 k 和 c 有可能还是一个比较大的数。

假设 k=1000,c=200,当我们对小规模数据(比如 n=100)排序时,n2的值实际上比 knlogn+c 还要小。

knlogn+c = 1000 * 100 * log100 + 200 远大于 10000

n^2 = 100*100 = 10000
所以,对于小规模数据的排序,O(n2) 的排序算法并不一定比 O(nlogn) 排序算法执行的时间长。对于小数据量的排序,我们选择比较简单、不需要递归的插入排序算法。

还记得我们之前讲到的哨兵来简化代码,提高执行效率吗?在 qsort() 插入排序的算法实现中,也利用了这种编程技巧。虽然哨兵可能只是少做一次判断,但是毕竟排序函数是非常常用、非常基础的函数,性能的优化要做到极致。

好了,C 语言的 qsort() 我已经分析完了,你有没有觉得其实也不是很难?基本上都是用了我们前面讲到的知识点,有了前面的知识积累,看一些底层的类库的时候是不是也更容易了呢?

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值