Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7 12 0
Sample Output
6 4
这道题就是求比一个数小又和这个数互质的个数,就是欧拉值,这是前人已经推导出来了;
phi=n/(P1)*(P1-1)/P2*(P2-1)....../(Pn-1)*(Pn-1 - 1)/Pn*(Pn - 1),带公式就行;P是素因子
#include<iostream>
#include<math.h>
#include<string.h>
#include<cstdio>
#define maxn 100000
#define ll long long
using namespace std;
int ans;
int solve(int x)
{
ans=x;
for(int i=2;i*i<x;i++)
{
if(x%i==0)
ans=ans/i*(i-1);
while(x%i==0) x/=i;
}
if(x>1)
ans=ans/x*(x-1);
}
int main()
{
ll n;
while(scanf("%lld",&n),n)
{
solve(n);
cout<<ans<<endl;
}
return 0;
}