https://vjudge.net/contest/294593#problem/F
这道题是把相邻矩阵的乘积用线段树保存了,后面重复查询的时候节省了很多时间,其实难点在于问题的转化和矩阵乘法的模拟上,线段树方面用到的是很简单区间更新问题。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#define ll long long
#define mod 1000000007
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 100005;
struct node
{
long long m[2][2];
}a[maxn << 2];
ll x[maxn];
node mulp(node a, node b)
{
node tmp;
memset(tmp.m, 0, sizeof(tmp.m));
for(int i = 0; i < 2; i ++)
for(int j = 0; j < 2; j ++)
for(int k = 0; k < 2; k ++)
tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
return tmp;
}
void build(int l, int r, int rt)
{
if(l == r)
{
a[rt].m[0][0] = 1;
a[rt].m[0][1] = 1;
a[rt].m[1][0] = x[l];
a[rt].m[1][1] = 0;
return ;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, (rt << 1) | 1);
a[rt] = mulp(a[rt << 1], a[rt << 1 | 1]);
}
node query(int l, int r, int L, int R, int rt)
{
if(L <= l && R >= r)
return a[rt];
int mid = (l + r) >> 1;
node tmp;
tmp.m[0][0] = 1, tmp.m[0][1] = 0;
tmp.m[1][0] = 0, tmp.m[1][1] = 1;
if(L <= mid) tmp = mulp(tmp, query(l, mid, L, R, rt << 1));
if(R > mid) tmp = mulp(tmp, query(mid + 1, r, L, R, rt << 1 | 1));
return tmp;
}
int main()
{
int t;
scanf("%d", &t);
while(t --)
{
int n, m;
memset(a, 0, sizeof(a));
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++)
scanf("%lld", &x[i]);
build(1, n, 1);
while(m --)
{
int u, v;
scanf("%d%d", &u, &v);
if(u == v)
printf("%lld\n", x[u]);
else if(u == v - 1)
printf("%lld\n", x[v]);
else
{
node ans = query(1, n, u + 2, v, 1);
printf("%lld\n", ((ans.m[0][0]*x[u+1])%mod+(ans.m[1][0]*x[u])%mod)%mod);
}
}
}
return 0;
}