这个算法比匈牙利算法快很多,然而网上没有具体的实现讲解。
题目链接:https://vjudge.net/problem/HDU-2063
先定义x方点,y方点为二分图中不同的两方点。
实现过程:
1.将所有x方点中未盖点全部加入队列。
2.进行广搜,找出短小的可增广路。
具体过程如下:
1>每次进行访问时,找到y方点中没有标号的点,将它的标号设为x方点的标号+1。
2>如果所选的y方点是未盖点,则找到了“可增广路”,不继续搜索这条线。
3>如果所选的y方点时匹配点,则沿着那条路继续搜。同时将其匹配的x方点的标号设为y方点标号+1.
3,找到未盖点,匈牙利算法搜索,寻找增广路,但是访问的点必须时前一个点的标号+1
vector存图
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
#define ll long long
#define mod 1000000007
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 505;
int mx[maxn], my[maxn];
int dx[maxn], dy[maxn];
int link[maxn];
bool vis[maxn];
int dis;
int n, m, k;
vector<int> G[maxn];
void init()
{
for(int i = 1; i <= n; i ++)
G[i].clear();
memset(link, -1, sizeof(link));
memset(mx, -1, sizeof(mx));
memset(my, -1, sizeof(my));
}
bool searchP()
{
queue<int> q;
dis = inf;
memset(dx, -1, sizeof(dx));
memset(dy, -1, sizeof(dy));
for(int i = 1; i <= n; i ++)
{
if(mx[i] == -1)
{
q.push(i);
dx[i] = 0;
}
}
while(! q.empty())
{
int u = q.front();
q.pop();
if(dx[u] > dis) break;
int sz = G[u].size();
for(int i = 0; i < sz; i ++)
{
int v = G[u][i];
if(dy[v] == -1)
{
dy[v] = dx[u] + 1;
if(my[v] == -1) dis = dy[v];
else
{
dx[my[v]] = dy[v] + 1;
q.push(my[v]);
}
}
}
}
return dis != inf;
}
bool dfs(int u)
{
int sz = G[u].size();
for(int i = 0; i < sz; i ++)
{
int v = G[u][i];
if(! vis[v] && dy[v] == dx[u] + 1)
{
vis[v] = 1;
if(my[v] != -1 && dy[v] == dis) continue;
if(my[v] == -1 || dfs(my[v]))
{
my[v] = u;
mx[u] = v;
return 1;
}
}
}
return 0;
}
int main()
{
while(scanf("%d", &k) != EOF && k)
{
scanf("%d%d", &n, &m);
init();
int u, v;
int ans = 0;
for(int i = 1; i <= k ; i ++)
{
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
while(searchP())
{
memset(vis, 0, sizeof(vis));
for(int i = 1; i <= n; i ++)
if(mx[i] == -1 && dfs(i))
ans ++;
}
printf("%d\n", ans);
}
return 0;
}
链式前向星
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
#define ll long long
#define mod 1000000007
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 505;
int mx[maxn], my[maxn];
int dx[maxn], dy[maxn];
int link[maxn];
bool vis[maxn];
int head[maxn];
int cnt;
int dis;
int n, m, k;
//vector<int> G[maxn];
struct node
{
int to, next;
}e[maxn*maxn];
void init()
{
// for(int i = 1; i <= n; i ++)
// G[i].clear();
cnt = 0;
memset(head, -1, sizeof(head));
memset(link, -1, sizeof(link));
memset(mx, -1, sizeof(mx));
memset(my, -1, sizeof(my));
}
void addedge(int u, int v)
{
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt ++;
}
bool searchP()
{
queue<int> q;
dis = inf;
memset(dx, -1, sizeof(dx));
memset(dy, -1, sizeof(dy));
for(int i = 1; i <= n; i ++)
{
if(mx[i] == -1)
{
q.push(i);
dx[i] = 0;
}
}
while(! q.empty())
{
int u = q.front();
q.pop();
if(dx[u] > dis) break;
//int sz = G[u].size();
for(int i = head[u]; ~i; i = e[i].next)
{
//int v = G[u][i];
int v = e[i].to;
if(dy[v] == -1)
{
dy[v] = dx[u] + 1;
if(my[v] == -1) dis = dy[v];
else
{
dx[my[v]] = dy[v] + 1;
q.push(my[v]);
}
}
}
}
return dis != inf;
}
bool dfs(int u)
{
//int sz = G[u].size();
for(int i = head[u]; ~i; i = e[i].next)
{
//int v = G[u][i];
int v = e[i].to;
if(! vis[v] && dy[v] == dx[u] + 1)
{
vis[v] = 1;
if(my[v] != -1 && dy[v] == dis) continue;
if(my[v] == -1 || dfs(my[v]))
{
my[v] = u;
mx[u] = v;
return 1;
}
}
}
return 0;
}
int main()
{
while(scanf("%d", &k) != EOF && k)
{
scanf("%d%d", &n, &m);
init();
int u, v;
int ans = 0;
for(int i = 1; i <= k ; i ++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
while(searchP())
{
memset(vis, 0, sizeof(vis));
for(int i = 1; i <= n; i ++)
if(mx[i] == -1 && dfs(i))
ans ++;
}
printf("%d\n", ans);
}
return 0;
}