两个字符串A,B中,最长的公共部分(子序列可以不连续)
核心部分状态转移方程:
dp[i][j]={dp[i−1][j−1]+1,A[i]==B[j]max{dp[i−1][j],dp[i][j−1]},A[i]!=B[j] dp[i][j]=\left\{
\begin{aligned}
dp[i-1][j-1]+1,A[i]==B[j] \\
max\{dp[i-1][j],dp[i][j-1]\},A[i]!=B[j]\\
\end{aligned}
\right.
dp[i][j]={dp[i−1][j−1]+1,A[i]==B[j]max{dp[i−1][j],dp[i][j−1]},A[i]!=B[j]
附上代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int MAXN = 1005;
int DP[MAXN][MAXN];
int main()
{
string a;
string b;
while (cin >> a >> b)
{
int l1 = a.size();
int l2 = b.size();
memset(DP, 0, sizeof(DP));
for (int i = 1; i <= l1; i++)
for (int j = 1; j <= l2; j++)
if (a[i - 1] == b[j - 1])
DP[i][j] = DP[i - 1][j - 1] + 1;
else
DP[i][j] = max(DP[i][j - 1], DP[i - 1][j]);
printf("%d\n", DP[l1][l2]);
}
return 0;
}
继续待更