leetcode上面的Tree合集
- 94.Binary Tree Inorder Traversal
- 95.Unique Binary Search Trees II
- 96. Unique Binary Search Trees
- 98.Validate Binary Search Tree
- 99. Recover Binary Search Tree
- 100.SameTree
- 101.Symmetric Tree
- 102. Binary Tree Level Order Traversal
- 105. Construct Binary Tree from Preorder and Inorder Traversal
- 106. Construct Binary Tree from Inorder and Postorder Traversal
94.Binary Tree Inorder Traversal
二叉树的中序遍历
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
if root == None:
return []
result = []
result.extend(self.inorderTraversal(root.left))
result.append(root.val)
result.extend(self.inorderTraversal(root.right))
return result
95.Unique Binary Search Trees II
与96题相似,就是将节点数目为n的二叉树打印出来
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def generateTrees(self, n: int) -> List[TreeNode]:
if n==0:
return []
x = self.buildTree([1,n])
return x
def buildTree(self,interval):
if interval[0] > interval[1]:
return [None]
result = []
for i in range(interval[0],interval[1]+1):
listLeft = self.buildTree([interval[0],i-1])
listRight = self.buildTree([i+1,interval[1]])
for j in range(len(listLeft)):
for k in range(len(listRight)):
x = TreeNode(i)
x.left = listLeft[j]
x.right = listRight[k]
result.append(x)
return result
96. Unique Binary Search Trees
计算节点为n的二叉树有几种不同的形状,通过找规律得到。
class Solution:
def numTrees(self, n: int) -> int:
numList = [1]
numList.append(1)
numList.append(2)
if n <= 2:
return numList[n]
for num in range(3,n+1):
count = 0
for i in range(num):
count += numList[i] * numList[num-(i+1)]
numList.append(count)
return numList[n]
98.Validate Binary Search Tree
校验一棵二叉树是否是BSF
就是判断每一个节点是否满足一定的区间条件
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
import math
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
return self.isValidInterval(root,[-math.inf,math.inf])
def isValidInterval(self,root,interval):
if root == None:
return True
intervalLeft = []
intervalRight = []
r = True
if root.val < interval[1] and interval[0] < root.val:
intervalLeft.append(interval[0])
intervalLeft.append(root.val)
intervalRight.append(root.val)
intervalRight.append(interval[1])
r = self.isValidInterval(root.left,intervalLeft) and self.isValidInterval(root.right,intervalRight)
else:
return False
return r
99. Recover Binary Search Tree
一个二叉树中有两个节点错位了,使用了中序遍历和冒泡排序,但是时间复杂度就是O(n^2)
class Solution:
def recoverTree(self, root: TreeNode) -> None:
"""
Do not return anything, modify root in-place instead.
"""
if root==None:
return root
#中序遍历
l = self.inorderTraversal(root)
#冒泡排序
for i in range(len(l)-1):
for j in range(len(l)-1):
if l[j].val > l[j+1].val:
temp = l[j].val
l[j].val = l[j+1].val
l[j+1].val = temp
def inorderTraversal(self,root):
if root==None:
return []
result = []
result.extend(self.inorderTraversal(root.left))
result.append(root)
result.extend(self.inorderTraversal(root.right))
return result
100.SameTree
判断两棵树否是一样的二叉树
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
if p == None and q == None:
return True
elif (p==None and q) or (p and q==None):
return False
if p.val != q.val:
return False
else:
return self.isSameTree(p.left,q.left) and self.isSameTree(p.right,q.right)
101.Symmetric Tree
判断一棵二叉树是否是对称的
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
if root == None:
return True
return self.symmetric(root.left,root.right)
def symmetric(self,p1,p2):
if p1 == None and p2 == None:
return True
elif p1==None and p2:
return False
elif p1 and p2==None:
return False
if p1.val == p2.val:
return self.symmetric(p1.left,p2.right) and self.symmetric(p1.right,p2.left)
return False
102. Binary Tree Level Order Traversal
层次遍历,使用队列
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
result = list()
queue = []
if root == None:
return []
queue.append([root])
result.append([root.val])
for i in queue:
temp = []
queue1 = []
for j in i:
if j.left:
queue1.append(j.left)
temp.append(j.left.val)
print(j.left.val)
if j.right:
queue1.append(j.right)
temp.append(j.right.val)
if len(temp):
result.append(temp)
queue.append(queue1)
return result
105. Construct Binary Tree from Preorder and Inorder Traversal
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if len(preorder) == 0:
return None
root = TreeNode(preorder[0])
index = inorder.index(preorder[0])
root.left = self.buildTree(preorder[1:index+1],inorder[0:index])
root.right = self.buildTree(preorder[index+1:],inorder[index+1:])
return root
106. Construct Binary Tree from Inorder and Postorder Traversal
利用中序和后序遍历列表构建二叉树
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
if len(postorder) == 0 or len(inorder) == 0:
return None
root = TreeNode(postorder[-1])
print(postorder[-1])
index = inorder.index(postorder[-1])
root.left = self.buildTree(inorder[:index],postorder[:index])
root.right = self.buildTree(inorder[index+1:],postorder[index:-1])
return root