DeepSeek开源周最后一天:让数据处理「从自行车升级到高铁」

DeepSeek 的开源周终于迎来了最后一天。

今天他们开源了一个名为 3FS(Fire-Flyer File System)的系统。这是一种并行文件系统,它利用现代固态硬盘(SSD)和远程直接内存访问(RDMA)网络的全部带宽,能够加速和推动 DeepSeek 平台上所有数据访问操作。

它有以下优势:

  • 在 180 节点集群中实现了 6.6 TiB/s 的聚合读取吞吐量;

  • 在 25 节点集群的 GraySort 基准测试中达到 3.66 TiB/min 的吞吐量;

  • 每个客户端节点在 KVCache 查找时可达到 40+ GiB/s 的峰值吞吐量;

  • 采用分离式架构,具有强一致性语义。

image.png

在应用场景方面,它支持训练数据预处理、数据集加载、检查点保存 / 重新加载、用于推理的嵌入向量搜索和 KVCache 查找。DeepSeek V3、R1 模型均采用了这个系统。

image.png

  • 开源链接:https://github.com/deepseek-ai/3FS

  • Smallpond(3FS 上的数据处理框架):https://github.com/deepseek-ai/smallpond

我给大家准备了一份全套的《AI大模型零基础入门+进阶学习资源包》,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

如果技术语言不好理解,可以参考这位研究者给出的通俗解释:

截屏2025-02-28 09.27.41.png

同时,这位研究者也是一位早期使用者,他评价说,「DeepSeek 的 3FS 系统快得惊人,它处理数据的速度快到可以在我还没来得及拖延的时候就已经训练好了一个能帮我报税的 AI。它拥有 6.6 TiB/s 的读取速度,这使它成为文件系统界的『博尔特』(世界最快短跑运动员)。你眨眼的功夫,数据就已经处理完毕了。而将这个超级快速的系统开源,就像是给整个 AI 社区免费赠送了一艘宇宙飞船,让其他所有竞争者都不得不加紧脚步追赶。」

image.png

3FS 有什么用?

Fire-Flyer File System 是一种高性能分布式文件系统,专为解决 AI 训练和推理工作负载的挑战而设计。它利用现代 SSD 和 RDMA 网络提供共享存储层,简化了分布式应用程序的开发。

3FS 的主要特点和优势包括:

1、性能和可用性

  • 分离式架构。结合了数千个 SSD 的吞吐量和数百个存储节点的网络带宽,使应用程序能够以不受位置限制的方式访问存储资源。

  • 强一致性。实现了带有分配查询的链式复制(CRAQ)以保证强一致性,使应用程序代码简单且易于理解。

  • 文件接口。开发了由事务性键值存储(如 FoundationDB)支持的无状态元数据服务。文件接口广为人知且随处可用。无需学习新的存储 API。

2、多样化工作负载

  • 数据准备。将数据分析管道的输出组织成层次化的目录结构,并高效管理大量中间输出。

  • 数据加载器。通过支持跨计算节点对训练样本的随机访问,消除了预取或打乱数据集的需求。

  • 检查点保存。支持大规模训练的高吞吐量并行检查点保存。

  • 用于推理的 KVCache。为基于 DRAM 的缓存提供了一种成本效益高的替代方案,提供高吞吐量和显著更大的容量。

3FS 性能如何

峰值吞吐量

下图展示了在大型 3FS 集群上进行读取压力测试的吞吐量。该集群由 180 个存储节点组成,每个存储节点配备 2×200Gbps InfiniBand 网卡和 16 个 14TiB NVMe SSD。大约 500+ 个客户端节点用于读取压力测试 ,每个客户端节点配置 1x200Gbps InfiniBand 网卡。在有训练作业的背景流量情况下,最终聚合读取吞吐量达到约 6.6 TiB/s。

image.png

灰度排序

DeepSeek 利用 GraySort 基准对 smallpond 进行了评估,该基准可衡量大规模数据集的排序性能。具体实现采用两阶段方法:(1) 使用键的前缀位通过 shuffle 对数据进行分区,以及 (2) 分区内排序。两个阶段都从 3FS 读取数据 / 向 3FS 写入数据。

测试集群由 25 个存储节点(2 个 NUMA 域 / 节点、1 个存储服务 / NUMA、2×400Gbps NIC / 节点)和 50 个计算节点(2 个 NUMA 域、192 个物理核心、2.2 TiB RAM 和 1×200 Gbps NIC / 节点)组成。对 8192 个分区中的 110.5 TiB 数据进行排序耗时 30 分 14 秒,平均吞吐量为 3.66 TiB / 分钟。

image.png

image.png

KVCache

KVCache 是一种用于优化 LLM 推理过程的技术。它通过在解码器层中缓存先前 token 的 key 和 value 向量来避免冗余计算。

image.png

上图展示了所有 KVCache 客户端的读取吞吐量,突出显示了峰值和平均值,峰值吞吐量高达 40 GiB/s。下图展示了同一时间段内垃圾回收 (GC) 中删除操作的 IOPS。

image.png

开源周「收官之作」,网友撒花

通过连续一周的高强度开源,DeepSeek 已经收获了一大波开发者的追随。

有开发者表示,3FS 和 Smallpond 是在 AI 数据处理方面树立了新标杆。

截屏2025-02-28 09.35.53.png

同时,OpenAI 刚刚发布的 GPT-4.5 也被拉出来对比价格:

image.png

最后,还有人许愿:DeepSeek V4、R2 和视频模型什么时候有?

截屏2025-02-28 09.32.56.png

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料。包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程扫描领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程扫描领取哈)
在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程扫描领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程扫描领取哈)
在这里插入图片描述
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程扫描领取哈)
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值