学会Stable Diffusion就要应用落地提升生产力,接下来我以我的应用案例来给大家讲讲我是怎么应用落地的,其他行业的应用原理也是相通的,可以作为参考。
BDicon生成三维图标
BDicon是我炼制的用于B端风格三维渲染图生成的大模型,主要使用ControlNet进行精准线稿生成,之前有写过一篇文章详细介绍生成细节操作,这里仅展示生成成果和分析。
[
如何用Bdicon大模型低门槛生成B端三维图标
图中第一行是文生图生成的,目前仅有部分物品文生图效果比较好,更多的文生图优化还有待后续炼制XL版本模型来实现,XL的文生图能力要好上许多,能清晰认识更多物品和概念。
第二行和第三行都是基于线稿生成的图像,可以根据业务需求自行绘制线稿控制生成结果,真正应用于工作。
下图中是使用简单线稿进行生成的效果,整体已经不错了,但是有些细节造型会有些小扭曲,比如正确勾号,目前的实践解决方案是加大分辨率后出图细节就能得到明显改善。
下图的高分辨率图像的细节造型就有了明显改善,正确勾号造型正确了。但是高分辨率放大也带来了新的问题,比如用户头部多出的造型,和背景元素被重绘的更多更明显了,这些问题可以通过PSbeta的AI功能去解决。
下方是BDicon的用户山卡拉叔叔的实践案例,虽然显卡只是1660s,但也有不错的效果。显卡只决定能不能跑,跑的有多快,生成的图片质量如何还是要看具体参数设置。
下方是小红书用户的实践案例,有了BDicon快速满足需求方有个图的需求,轻松下班哈哈
上方的都是简单线稿生成,接下来我们来看一下复杂线稿的生成效果,复杂线稿的具体参数需要对应调整,具体细节可以关注后续更新。
通过替换提示词,可以低成本快速更换色调,一个颜色耗时十分钟左右,比在三维软件中更改色调再重新渲染节约了数十倍的时间。虽然细节还有瑕疵,但要求不高的需求可以用了,要求高的需求也可以可以作为方向性参考与团队先过一遍,确定了再照着这个方向做,对齐双方预期,避免因为预想结果不同造成的反复修改。
微软风lora叠加风格
下图即是文章开头的视频中提到的微软风LoRA叠加到BDicon 上生成的效果,让成图结果带有了明显的柔彩质感。
多叠加Lora也有机会出现神奇的效果,下方是BDicon的用户山卡拉叔叔叠加了blindbox, microsoft design,御火 V2,CGgame C4D bsw 等4个LoRA生成的效果,多样化了许多,这种LoRA叠加的权重设置没有明显通用的规则,往往需要靠着对各个LoRA的了解来设定和尝试最佳设置。
训练模型满足特定需求
SD之于MJ的一大区别就是自主训练模型满足特定需求,例如我的BDicon和微软风模型就是为了满足B端设计所需的三维模型的特定需求而训练的。市场上的人像模型、游戏模型、IP模型、电商营销模型也都是如此为了满足各自特定的需求而训练的,下方是我写的一些训练模型和应用模型相关经验的文章,有兴趣的可以前往本号文章列表查阅。
Dreambooth 官方炼丹教程万字详解-Epochs\Batch size\学习率 等超参数调优 (一)
Dreambooth 官方炼丹教程详解-影响显存的高级设置(二)
接下来我以得到AIGC专家海辛转发推荐的微软风LoRA为案例,向大家展示不打标的极简炼丹术的训练思路。本思路可以适用于各种画风迁移到SD的需求,不仅局限于MJ出品的画风,任何训练集的画风都可以的。
这是MJ生成的微软风图标训练集,本次使用了100多张这样的图片作为训练集提供给SD进行学习,并未进行打标处理,分辨率也是1024。
这是训练完模型后进行XY轴测试模型效果的截图,将不同训练成果叠加于不同底模之上,即可直观的感受到不同的表现,然后再根据各方面表现筛选效果最好的那一个,作为最终成品LoRA文件发布。
当然,很难一次训练就得到最佳成果,往往需要从基础参数开始,多次调整训练参数才能得到满意的成果。
下图是我训练的另一个暗橙色风格的大模型SDicon,使用了50张素材左右的训练集进行训练,Ckpt大模型的训练并不一定比LoRA难,但对电脑性能和硬盘空间的需求是确定性的更多,一次训练产生几十G的文件很正常。
利用SD做其他有趣的事
学会SD后,除了应用于正经工作提效以外,我们还可以做些有趣的事情。例如利用SD的AI能力融合现实中无法融合的物体,轻松五分钟产出以前需要用PS辛苦的合成五小时的融合创意图。
我将这种融合创意图应用于我和B站合作的H5小游戏的效果也挺有意思,这次小游戏为了呼应《塞尔达·王国之泪》游戏上线而做的融合玩法收到的反响还不错,游玩次数也突破了10W+,并且加上多次推翻修改的制作成本依旧只有传统PS合成方式的几十分之一,详情可以看我写的这篇总结文章
AI绘画商用案例:Stable Diffusion 生成B站塞尔达H5小游戏梗图
SD的放大能力还能用于放大MJ生成的图片,将不足2k的图放大为5k超清并且合理的增加细节,可以有效提升图片的品质水平。
下图是我生成的银河舰队系列战舰,使用MJ生成图片后再到SD里添加细节和放大,最后在剪映里组合成视频,最终相关视频全网播放量50W+,收获了2W多个赞,也算是很有趣的经历了。
与视频生成AI Gen-2 联动
SD生成图片还可以进一步放入视频生成AI Gen-2里进行图生视频的处理,出来的结果也挺有惊喜的。感觉现在AI视频的发展程度已经到达MJ早期V1的阶段了感觉,技术突破应该就在这几年了,下方是使用Gen-2生成的一些视频,可以感受一下AI视频技术的突破。
**
**
总结
以上就是为什么要学SD,怎么学SD,学了SD怎么应用落地等几个问题的回答了,更多实践案例及落地细节敬请期待后续课程更新,祝大家都能愉快的学会SD,生成出最棒的作品哈哈~
文章使用的大模型、Lora模型、SD插件、示例图片等,都已经上传到我整理的 Stable Diffusion 绘画资源中。有需要的小伙伴文末扫码自行获取。
写在最后
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
