RabbitMQ 的概念
RabbitMQ 是一个消息中间件:它接受并转发消息。你可以把它当做一个快递站点,当你要发送一个包裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑 RabbitMQ 是一个快递站,一个快递员帮你传递快件。RabbitMQ 与快递站的主要区别在于,它不处理快件而是接收,存储和转发消息数据。
四大核心概念
生产者(producer)
产生数据发送消息的程序是生产者
交换机(exchange)
交换机是 RabbitMQ 非常重要的一个部件,一方面它接收来自生产者的消息,另一方面它将消息推送到队列中。交换机必须确切知道如何处理它接收到的消息,是将这些消息推送到特定队列还是推送到多个队列,亦或者是把消息丢弃,这个得有交换机类型决定(交换机是不能存储消息的,交换机只做一件事就是把消息推送到队列中)
队列(queue)
队列是 RabbitMQ 内部使用的一种数据结构,尽管消息流经 RabbitMQ 和应用程序,但它们只能存储在队列中。队列仅受主机的内存和磁盘限制的约束,本质上是一个大的消息缓冲区。许多生产者可以将消息发送到一个队列,许多消费者可以尝试从一个队列接收数据。这就是我们使用队列的方式
消费者(consumer)
消费与接收具有相似的含义。消费者大多时候是一个等待接收消息的程序。请注意生产者,消费者和消息中间件很多时候并不在同一机器上。同一个应用程序既可以是生产者又是可以是消费者。
工作原理
- Broker:接收和分发消息的应用,RabbitMQ Server 就是 Message Broker
- Virtual host:出于多租户和安全因素设计的,把 AMQP 的基本组件划分到一个虚拟的分组中,类似于网络中的 namespace 概念。当多个不同的用户使用同一个 RabbitMQ server 提供的服务时,可以划分出多个 vhost,每个用户在自己的 vhost 创建 exchange/queue 等(类似于MySql数据库的概念)
- Connection:publisher/consumer 和 broker 之间的 TCP 连接
- Channel:如果每一次访问 RabbitMQ 都建立一个 Connection,在消息量大的时候建立 TCP Connection 的开销将是巨大的,效率也较低。Channel 是在 connection 内部建立的逻辑连接,如果应用程序支持多线程,通常每个 thread 创建单独的 channel 进行通讯,AMQP method 包含了 channel id 帮助客户端和 message broker 识别channel,所以 channel 之间是完全隔离的。Channel 作为轻量级的
Connection 极大减少了操作系统建立 TCP connection 的开销 - Exchange:message 到达 broker 的第一站,根据分发规则,匹配查询表中的 routing key,分发消息到 queue 中去。常用的类型有:direct (point-to-point), topic (publish-subscribe) and fanout (multicast)
- Queue:消息最终被送到这里等待 consumer 取走
- Binding:exchange 和 queue 之间的虚拟连接,binding 中可以包含 routing key,Binding 信息被保存到 exchange 中的查询表中,用于 message 的分发依据
消息应答
概念:
消费者完成一个任务可能需要一段时间,如果其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉了,会发生什么情况。RabbitMQ 一旦向消费者传递了一条消息,便立即将该消息标记为删除。在这种情况下,突然有个消费者挂掉了,我们将丢失正在处理的消息。以及后续发送给该消费这的消息,因为它无法接收到。为了保证消息在发送过程中不丢失,rabbitmq 引入消息应答机制,消息应答就是:消费者在接收到消息并且处理该消息之后,告诉 rabbitmq 它已经处理了,rabbitmq 可以把该消息删除了。
自动应答
(消息默认采用的是自动应答)消息发送后立即被认为已经传送成功,这种模式需要在高吞吐量和数据传输安全性方面做权衡,因为这种模式如果消息在接收到之前,消费者那边出现连接或者 channel 关闭,那么消息就丢失了,当然另一方面这种模式消费者那边可以传递过载的消息,没有对传递的消息数量进行限制,当然这样有可能使得消费者这边由于接收太多还来不及处理的消息,导致这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死,所以这种模式仅适用在消费者可以高效并以某种速率能够处理这些消息的情况下使用。
消息应答的方法
- Channel.basicAck(用于肯定确认)
RabbitMQ 已知道该消息并且成功的处理消息,可以将其丢弃了 - Channel.basicNack(用于否定确认)
- Channel.basicReject(用于否定确认) 与 Channel.basicNack 相比少一个参数不处理该消息了直接拒绝,可以将其丢弃了
总结:手动应答的好处是可以批量应答并且减少网络拥堵
void basicAck(long deliveryTag, boolean multiple) throws IOException;
multiple 的 true 和 false 代表不同意思
true 代表批量应答 channel 上未应答的消息
比如说 channel 上有传送 tag 的消息 5,6,7,8 当前 tag 是 8 那么此时,下图的这些还未应答的消息都会被确认收到消息应答
false 同上面相比只会应答 tag=8 的消息 5,6,7 这三个消息依然不会被确认收到消息应答
总结:手动应答的好处是可以批量应答并且减少网络拥堵
消息自动重新入队
如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或 TCP 连接丢失),导致消息未发送 ACK 确认,RabbitMQ 将了解到消息未完全处理,并将对其重新排队。如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。
手动应答
默认消息采用的是自动应答,所以我们要想实现消息消费过程中不丢失,需要把自动应答改为手动应答
消息消费者
RabbitMQ 持久化
概念
刚刚我们已经看到了如何处理任务不丢失的情况,但是如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。默认情况下 RabbitMQ 退出或由于某种原因崩溃时,它忽视队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事:我们需要将队列和消息都标记为持久化。
队列如何实现持久化
之前我们创建的队列都是非持久化的,rabbitmq 如果重启的化,该队列就会被删除掉,如果要队列实现持久化需要在声明队列的时候把durable 参数设置为持久化
注意:如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会出现错误
以下为控制台中持久化与非持久化队列的 UI 显示区
这个时候即使重启 rabbitmq 队列也依然存在
消息持久化
要想让消息实现持久化需要在消息生产者修改代码MessageProperties.PERSISTENT_TEXT_PLAIN 添加这个属性。
将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候 但是还没有存储完,消息还在缓存的一个间隔点。此时并没有真正写入磁盘。持久性保证并不强,但是对于我们的简单任务队列而言,这已经绰绰有余了。如果需要更强有力的持久化策略,参考后面章节
不公平分发
在最开始的时候我们学习到 RabbitMQ 分发消息采用的轮询分发(默认策略是轮询),但是在某种场景下这种策略并不是很好,比方说有两个消费者在处理任务,其中有个消费者 1 处理任务的速度非常快,而另外一个消费者 2 处理速度却很慢,这个时候我们还是采用轮训分发的化就会到这处理速度快的这个消费者很大一部分时间处于空闲状态,而处理慢的那个消费者一直在干活,这种分配方式在这种情况下其实就不太好,但是RabbitMQ 并不知道这种情况它依然很公平的进行分发。
为了避免这种情况,我们可以设置参数 channel.basicQos(1);
意思就是如果这个任务我还没有处理完或者我还没有应答你,你先别分配给我,我目前只能处理一个任务,然后 rabbitmq 就会把该任务分配给没有那么忙的那个空闲消费者,当然如果所有的消费者都没有完成手上任务,队列还在不停的添加新任务,队列有可能就会遇到队列被撑满的情况,这个时候就只能添加新的 worker 或者改变其他存储任务的策略。
预期值
本身消息的发送就是异步发送的,所以在任何时候,channel 上肯定不止只有一个消息另外来自消费者的手动确认本质上也是异步的。因此这里就存在一个未确认的消息缓冲区,因此希望开发人员能限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。这个时候就可以通过使用 basic.qos 方法设置“预取计数”值来完成的。该值定义通道上允许的未确认消息的最大数量。一旦数量达到配置的数量,RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认,例如,假设在通道上有未确认的消息 5、6、7,8,并且通道的预取计数设置为 4,此时 RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack。比方说 tag=6 这个消息刚刚被确认 ACK,RabbitMQ 将会感知这个情况到并再发送一条消息。消息应答和 QoS 预取值对用户吞吐量有重大影响。通常,增加预取将提高向消费者传递消息的速度。虽然自动应答传输消息速率是最佳的,但是,在这种情况下已传递但尚未处理的消息的数量也会增加,从而增加了消费者的 RAM 消耗(随机存取存储器)应该小心使用具有无限预处理的自动确认模式或手动确认模式,消费者消费了大量的消息如果没有确认的话,会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范围内的值通常可提供最佳的吞吐量,并且不会给消费者带来太大的风险。预取值为 1 是最保守的。当然这将使吞吐量变得很低,特别是消费者连接延迟很严重的情况下,特别是在消费者连接等待时间较长的环境中。对于大多数应用来说,稍微高一点的值将是最佳的
发布确认原理(保证生产者生产消息的时候消息丢失)
生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后,broker就会发送一个确认给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队列了,如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker 回传给生产者的确认消息中 delivery-tag 域包含了确认消息的序列号,此外 broker 也可以设置basic.ack 的 multiple 域,表示到这个序列号之前的所有消息都已经得到了处理。
confirm 模式最大的好处在于他是异步的,一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消息,生产者应用程序同样可以在回调方法中处理该 nack 消息。
发布确认的策略
发布确认默认是没有开启的,如果要开启需要调用方法confirmSelect,每当你要想使用发布确认,都需要在 channel 上调用该方法
单个确认发布
这是一种简单的确认方式,它是一种同步确认发布的方式,也就是发布一个消息之后只有它被确认发布,后续的消息才能继续发布,waitForConfirmsOrDie(long)这个方法只有在消息被确认的时候才返回,如果在指定时间范围内这个消息没有被确认那么它将抛出异常。这种确认方式有一个最大的缺点就是:发布速度特别的慢,因为如果没有确认发布的消息就会阻塞所有后续消息的发布,这种方式最多提供每秒不超过数百条发布消息的吞吐量。当然对于某些应用程序来说这可能已经足够了。
private static final int MESSAGE_COUNT=100;
public static void main(String[] args) throws IOException, TimeoutException, InterruptedException {
Channel channel = RabbitMqUtils.getConnection();
String queueName = UUID.randomUUID().toString();
channel.queueDeclare(queueName,false,false,false,null);
// 开启确认发布
channel.confirmSelect();
long begin = System.currentTimeMillis();
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message=i+"";
channel.basicPublish("",queueName,null,message.getBytes());
// 服务端返回false或超时时间内未返回,生产者可以消息重发
boolean flag = channel.waitForConfirms();
if (flag) {
System.out.println("消息发送成功");
}
}
long end = System.currentTimeMillis();
System.out.println("发布"+MESSAGE_COUNT+"个单独确认消息,耗时"+(end-begin)+"ms");
}
批量确认发布
上面那种方式非常慢,与单个等待确认消息相比,先发布一批消息然后一起确认可以极大地提高吞吐量,当然这种方式的缺点就是:当发生故障导致发布出现问题时,不知道是哪个消息出现问题了,我们必须将整个批处理保存在内存中,以记录重要的信息而后重新发布消息。当然这种方案仍然是同步的,也一样阻塞消息的发布。
private static final int MESSAGE_COUNT=1000;
private static final int BATCH_SIZE=100;
public static void main(String[] args) throws IOException, TimeoutException, InterruptedException {
Channel channel = RabbitMqUtils.getConnection();
String queueName = UUID.randomUUID().toString();
channel.queueDeclare(queueName,false,false,false,null);
// 开启确认发布
channel.confirmSelect();
// 未确认消息个数
int outstandingMessageCount=0;
long begin = System.currentTimeMillis();
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message=i+"";
channel.basicPublish("",queueName,null,message.getBytes());
// 服务端返回false或超时时间内未返回,生产者可以消息重发
outstandingMessageCount++;
if (outstandingMessageCount==BATCH_SIZE){
channel.waitForConfirms();
outstandingMessageCount=0;
}
}
// 为了确保还有剩余消息没有确认消息再次确认
if (outstandingMessageCount>0){
channel.waitForConfirms();
}
long end = System.currentTimeMillis();
System.out.println("发布"+MESSAGE_COUNT+"个单独确认消息,耗时"+(end-begin)+"ms");
}
}
异步确认发布
异步确认虽然编程逻辑比上两个要复杂,但是性价比最高,无论是可靠性还是效率都没得说,他是利用回调函数来达到消息可靠性传递的,这个中间件也是通过函数回调来保证是否投递成功,下面就让我们来详细讲解异步确认是怎么实现的。
private static final int MESSAGE_COUNT=1000;
public static void main(String[] args) throws IOException, TimeoutException {
String queueName = UUID.randomUUID().toString();
Channel channel = RabbitMqUtils.getConnection();
channel.queueDeclare(queueName,false,false,false,null);
// 开启确认发布
channel.confirmSelect();
/*
* 线程安全有序的一个哈希表,适用于高并发的情况
* 1.轻松的将序号与消息进行关联
* 2.轻松批量删除条目 只要给到序列号
* 3.支持并发访问
* */
ConcurrentSkipListMap<Long,String> outstandingConfirms =new ConcurrentSkipListMap<>();
/*
* 确认收到消息的一个回调
* 1.消息序列号
* 2.true可以确认小于等于当前序列号的消息
* false 确认当前序列号信息
* */
ConfirmCallback ackCallback = (sequenceName,multiple)->{
if(multiple){
// 返回的是小于等于当前序列号的未确认消息 是一个map
ConcurrentNavigableMap<Long,String> confirmed=outstandingConfirms.headMap(sequenceName,true);
// 清除该部分未确认消息
confirmed.clear();
}else {
// 只清除当前序列号的消息
outstandingConfirms.remove(sequenceName);
}
};
ConfirmCallback nackCallback=(sequenceName,multiple)->{
String message=outstandingConfirms.get(sequenceName);
System.out.println("发布的消息"+message+"未被确认序列号"+sequenceName);
};
/*
* 添加一个异步确认的监听器
* 1.确认收到消息的回调
* 2.未收到消息的回调
* */
channel.addConfirmListener(ackCallback,null);
long begin=System.currentTimeMillis();
for (int i = 0; i <MESSAGE_COUNT ; i++) {
String message="消息"+i;
/*
* channel,getNextPublishSeqNo()获取下一个消息的序列号
* 通过序列号与消息进行一个关联
* 全部都是消息未确认的消息体
* */
outstandingConfirms.put(channel.getNextPublishSeqNo(),message);
channel.basicPublish("",queueName,null,message.getBytes());
}
long end =System.currentTimeMillis();
System.out.println("发布"+MESSAGE_COUNT+"个异步消息耗时"+(end-begin)+"ms");
}
死信队列
概念:
死信,顾名思义就是无法被消费的消息,字面意思可以这样理解,一般来说,producer 将消息投递到 broker 或者直接到 queue 里了,consumer 从 queue 取出消息进行消费,但某些时候由于特定的原因导致 queue 中的某些消息无法被消费,这样的消息如果没有后续的处理,就变成了死信,有死信自然就有了死信队列。
应用场景:为了保证订单业务的消息数据不丢失,需要使用到 RabbitMQ 的死信队列机制,当消息消费发生异常时,将消息投入死信队列中.还有比如说: 用户在商城下单成功并点击去支付后在指定时间未支付时自动失效
进入死信队列的条件(满足其一即可)
- 消息被拒绝(basic.reject 或 basic.nack)并设置不会重新入队requeue=false.
- 消息TTL过期
- 消费者设置队列最大长度x-max-length,超过这个阈值的无法在添加数据到MQ中
队列设置TTL过期时间
params.put("x-message-ttl",10000);
消息设置TTL
// 设置消息的TTL时间
AMQP.BasicProperties properties=new AMQP.BasicProperties().builder()
.expiration("20000").build();
如果设置了队列的 TTL 属性,那么一旦消息过期,就会被队列丢弃(如果配置了死信队列被丢到死信队列中),而第二种方式,消息即使过期,也不一定会被马上丢弃,因为消息是否过期是在即将投递到消费者
之前判定的,如果当前队列有严重的消息积压情况,则已过期的消息也许还能存活较长时间(因为队列是先进先出的,设置过期时间会导致消息排队以第一条消息过期时间为准,如果第一条消息的延时时长,而第二条消息的延时时间很短,第二个消息并不会优先得到执行,使用RabbitMQ插件实现延迟队列rabbitmq_delayed_message_exchange);另外,还需要注意的一点是,如果不设置 TTL,表示消息永远不会过期,如果将 TTL 设置为 0,则表示除非此时可以直接投递该消息到消费者,否则该消息将会被丢弃。
延时队列
概念:
延时队列,队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的元素的队列。
延迟队列使用场景
- 订单在十分钟之内未支付则自动取消
- 新创建的店铺,如果在十天内都没有上传过商品,则自动发送消息提醒。
- 用户注册成功后,如果三天内没有登陆则进行短信提醒。
- 用户发起退款,如果三天内没有得到处理则通知相关运营人员。
- 预定会议后,需要在预定的时间点前十分钟通知各个与会人员参加会议
使用
先安装插件使用RabbitMQ插件实现延迟队列rabbitmq_delayed_message_exchange
和死信队列一样使用,因为消息队列是采用队列的数据结构,所以是先进先出,然后这个插件会把消息按,TTL过期时间进行排序,这样子就会不像一般死信队列一样先进后出,而是按照TTL过期时间从小到大进行排序,TTL短的可以优先得到执行
死信队列绑定死信交换机与routingKey
channel.queueBind(deadQueue,DEAD_EXCHANGE_NAME,"lisi");
// 正常队列绑定死信队列信息
HashMap<String, Object> params = new HashMap<>();
// 正常队列设置死信交换机,参数key是固定值
params.put("x-dead-letter-exchange",DEAD_EXCHANGE_NAME);
// 正常队列设置死信routing-key 参数key是
params.put("x-dead-latter-routing-key","lisi");
// 设置队列过期时间
params.put("x-message-ttl",10000);
发布确认模式(SpringBoot版本)
为什么需要消息发布确认机制?
当生产者发送消息到消费者的时候,交换机重启或者是宕机了
这时候 我们需要保证消息的可靠性,生产者发送消息到交换机的时候,交换机会开启监听,当消息发送到交换机的时候,会到监听器,通过监听器,我们可以把发送失败的消息,放到缓存里面,用定时任务重新发送;(这里针对的是交换机宕机,队列宕机的情况这种是解决不了的,消息回退手动需要开启后面我会写)
配置文件
spring.rabbitmq.publisher-confirm-type=correlated
- NONE(默认值)禁用发布确认模式
- CORRELATED 发布消息成功到交换器后会触发回调方法
- SIMPLE
经测试有两种效果,其一效果和 CORRELATED 值一样会触发回调方法,其二在发布消息成功后使用 rabbitTemplate 调用 waitForConfirms 或 waitForConfirmsOrDie 方法等待 broker 节点返回发送结果,根据返回结果来判定下一步的逻辑,要注意的点是waitForConfirmsOrDie 方法如果返回 false 则会关闭 channel,则接下来无法发送消息到 broker
推荐使用CORRELATED ,性能比SIMPLE要好,因为SIMPLE是用waitForConfirms 方法等待,确认发送成功了才会发送下一条,是阻塞式的
实现RabbitTemplate.ConfirmCallback接口开启监听
/**
*
* @param correlationData 回调相关的数据
* @param ack true表示发送成功 false 表示发送失败
* @param cause 失败原因,成功为空
*/
@Override
public void confirm(CorrelationData correlationData, boolean ack, String cause) {
}
回退消息
为什么需要回退消息
在仅开启了生产者确认机制的情况下,交换机接收到消息后,会直接给消息生产者发送确认消息,如果发现该消息不可路由,那么消息会被直接丢弃,此时生产者是不知道消息被丢弃这个事件的。那么如何让无法被路由的消息帮我想办法处理一下?最起码通知我一声,我好自己处理啊。通过设置 mandatory 参数可以在当消息传递过程中不可达目的地时将消息返回给生产者。
rabbitTemplate.setMandatory()
实现RabbitTemplate.ReturnCallback接口
/**
*
* @param message 返回消息
* @param replyCode 返回的错误Code
* @param replyText 返回的错误信息
* @param exchange 获取交换机
* @param routingKey 获取路由
*/
@Override
public void returnedMessage(Message message, int replyCode, String replyText, String exchange, String routingKey) {
}
怎么避免消息丢失
有了 mandatory 参数和回退消息,我们获得了对无法投递消息的感知能力,有机会在生产者的消息无法被投递时发现并处理。但有时候,我们并不知道该如何处理这些无法路由的消息,最多打个日志,然后触发报警,再来手动处理。而通过日志来处理这些无法路由的消息是很不优雅的做法,特别是当生产者所在的服务有多台机器的时候,手动复制日志会更加麻烦而且容易出错。而且设置 mandatory 参数会增加生产者的复杂性,需要添加处理这些被退回的消息的逻辑。如果既不想丢失消息,又不想增加生产者的复杂性,该怎么做呢?前面在设置死信队列的文章中,我们提到,可以为队列设置死信交换机来存储那些处理失败的消息,可是这些不可路由消息根本没有机会进入到队列,因此无法使用死信队列来保存消息。在 RabbitMQ 中,有一种备份交换机的机制存在,可以很好的应对这个问题。什么是备份交换机呢?备份交换机可以理解为 RabbitMQ 中交换机的“备胎”,当我们为某一个交换机声明一个对应的备份交换机时,就是为它创建一个备胎,当交换机接收到一条不可路由消息时,将会把这条消息转发到备份交换机中,由备份交换机来进行转发和处理,通常备份交换机的类型为 Fanout ,这样就能把所有消息都投递到与其绑定的队列中,然后我们在备份交换机下绑定一个队列,这样所有那些原交换机无法被路由的消息,就会都进入这个队列了。当然,我们还可以建立一个报警队列,用独立的消费者来进行监测和报警。
幂等性问题
概念
用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。举个最简单的例子,那就是支付,用户购买商品后支付,支付扣款成功,但是返回结果的时候网络异常,此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款,返回结果成功,用户查询余额发现多扣钱了,流水记录也变成了两条。在以前的单应用系统中,我们只需要把数据操作放入事务中即可,发生错误立即回滚,但是再响应客户端的时候也有可能出现网络中断或者异常等等
消息重复消费
消费者在消费 MQ 中的消息时,MQ 已把消息发送给消费者,消费者在给 MQ 返回 ack 时网络中断,故 MQ 未收到确认信息,该条消息会重新发给其他的消费者,或者在网络重连后再次发送给该消费者,但实际上该消费者已成功消费了该条消息,造成消费者消费了重复的消息。
解决思路
在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性,这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。
业界主流的幂等性有两种操作:
a.唯一 ID+指纹码机制,利用数据库主键去重,
b.利用 redis 的原子性去实现
唯一 ID+指纹码机制
指纹码:我们的一些规则或者时间戳加别的服务给到的唯一信息码,它并不一定是我们系统生成的,基本都是由我们的业务规则拼接而来,但是一定要保证唯一性,然后就利用查询语句进行判断这个 id 是否存在数据库中,优势就是实现简单就一个拼接,然后查询判断是否重复;劣势就是在高并发时,如果是单个数据库就会有写入性能瓶颈当然也可以采用分库分表提升性能,但也不是我们最推荐的方式。
Redis 原子性
利用 redis 执行 setnx 命令,天然具有幂等性。从而实现不重复消费