机器学习之“查准率”、“查全率”、“F1-Score”、“ROC”、“混淆矩阵”的定义

一、查准率(precision)、查全率(precision)、F1

对于二分类问题,可根据样例根据其真实类别与学习器预测类别的组合划为真正例(true positive)、假正例(false positive)、真反例(true negative)、假反例(false negative),分别用TP、FP、TN、FN表示相应样例数,样例总数=TP+FP+TN+FN;分类结果混淆矩阵:在这里插入图片描述
查准率P和查全率R分别定义为

P = TP/(TP+FP)

R = TP/(TP+FN)
查准率和查全率是一对矛盾的指标,一般说,当查准率高的时候,查全率一般很低;查全率高时,查准率一般很低。比如:若我们希望选出的西瓜中好瓜尽可能多,即查准率高,则只挑选最优把握的西瓜,算法挑选出来的西瓜(TP+FP)会减少,相对挑选出的西瓜确实是好瓜(TP)也相应减少,但是分母(TP+FP)减少的更快,所以查准率变大;在查全率公式中,分母(所有好瓜的总数)是不会变的,分子(TP)在减小,所以查全率变小。
在实际的模型评估中,单用查准率或者查全率来评价模型是不完整的,评价模型时必须用Precision/Recall两个值。这里介绍三种使用方法:平衡点(Break-Even Point,BEP)、F1度量、F1度量的一般化形式。
若一个学习器P-R曲线被另一个学习器的曲线完全"包住",则可断言后者的性能优于前者, 例如图中学习器A 的性能优于学习器C; 如果两个学习器的P-R 曲线发生了交叉7,例如图中的A 与B ,则难以一般性地断言两者孰优孰劣,只能在具体的查准率或查全率条件下进行比较然而,在很多情形下,人们往往仍希望把学习器A 与B 比出个高低. 这时一个比较合理的判据是比较P-R 曲线节面积的大小。
平衡点(BEP):是产准率和查全率曲线中查准率=查全率时的取值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值