[贪心+并查集] [kuangbin带你飞]专题五 并查集 G - Supermarket

本文介绍了一种通过贪心算法来解决最优销售计划的问题,旨在最大化销售利润。算法首先按产品利润从大到小排序,然后尽可能地在截止日期前销售高利润产品。文章提供了两种实现方式:一种使用标记数组来跟踪每天的状态;另一种采用并查集优化,减少查找时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

G - Supermarket

 

A supermarket has a set Prod of products on sale. It earns a profit px for each product x∈Prod sold by a deadline dx that is measured as an integral number of time units starting from the moment the sale begins. Each product takes precisely one unit of time for being sold. A selling schedule is an ordered subset of products Sell ≤ Prod such that the selling of each product x∈Sell, according to the ordering of Sell, completes before the deadline dx or just when dx expires. The profit of the selling schedule is Profit(Sell)=Σ x∈Sellpx. An optimal selling schedule is a schedule with a maximum profit. 
 For example, consider the products Prod={a,b,c,d} with (pa,da)=(50,2), (pb,db)=(10,1), (pc,dc)=(20,2), and (pd,dd)=(30,1). The possible selling schedules are listed in table 1. For instance, the schedule Sell={d,a} shows that the selling of product d starts at time 0 and ends at time 1, while the selling of product a starts at time 1 and ends at time 2. Each of these products is sold by its deadline. Sell is the optimal schedule and its profit is 80. 

Write a program that reads sets of products from an input text file and computes the profit of an optimal selling schedule for each set of products. 
Input
A set of products starts with an integer 0 <= n <= 10000, which is the number of products in the set, and continues with n pairs pi di of integers, 1 <= pi <= 10000 and 1 <= di <= 10000, that designate the profit and the selling deadline of the i-th product. White spaces can occur freely in input. Input data terminate with an end of file and are guaranteed correct.
Output
For each set of products, the program prints on the standard output the profit of an optimal selling schedule for the set. Each result is printed from the beginning of a separate line.
Sample Input
4  50 2  10 1   20 2   30 1

7  20 1   2 1   10 3  100 2   8 2
   5 20  50 10
Sample Output
80
185
Hint
The sample input contains two product sets. The first set encodes the products from table 1. The second set is for 7 products. The profit of an optimal schedule for these products is 185.


贪心,最大的先卖,当天不行就往前推

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int vis[10005];
struct node
{
	int p, t;
} a[10005];
bool cmp(node x, node y)
{
	return x.p > y.p;
}
int main()
{
	int n;
	while (scanf("%d", &n) != EOF)
	{
		memset(vis,0,sizeof(vis));
		for (int i = 1; i <= n; i++)
		{
			scanf("%d%d", &a[i].p, &a[i].t);
		}
		sort(a + 1, a + n + 1, cmp);
		int ans = 0;
		for (int i = 1; i <= n; i++)
		{
			int k = a[i].t;
			while (vis[k])
			{
				k--;
			}
			if(k==0) continue; //边界要注意
			vis[k] = 1;
		    ans += a[i].p;
		}
		printf("%d\n", ans);
	}
}

也可以用并查集进行优化,不用一天天向前推,可以跳着走

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int pre[10005];  //因为城市可以很少,而天数可以很大,所以单开数组
struct node
{
	int p, t;
} a[10005];
bool cmp(node x, node y) //价值大的先卖掉,最好是保质期最后一天卖掉
{
	return x.p > y.p;
}
int find(int x)  //正常路径压缩
{
	if(pre[x]!=x) pre[x]=find(pre[x]);
	return pre[x];
}
void init()  //初始化
{
	for(int i=0;i<=10003;i++) pre[i]=i;
}
int main()
{
	int n;
	while (scanf("%d", &n) != EOF)
	{
		init();
		for (int i = 1; i <= n; i++)
		{
			scanf("%d%d", &a[i].p, &a[i].t);
		}
		sort(a + 1, a + n + 1, cmp);
		int ans = 0;
		for (int i = 1; i <= n; i++)  //如果此物品的最大一天保质期没有可,就找他的父节点用
		{
			int d=find(a[i].t);
			if(d==0) continue;   //边界判断,很重要,要是第一天用过了,他的父亲就是0,刀客0就不能再走了,不可能在卖掉此物品,直接continue
			pre[d]=d-1;    //要是能走,,这个点就被用掉了,他的父亲变成了前一天
		    ans += a[i].p;
		}
		printf("%d\n", ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值