import pandas as pd
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
## 读取数据
data = pd.read_csv('data.csv', encoding='gbk')
## 将target变为数字
data.loc[data['好瓜与否']!= '是','好瓜与否'] = 0
data.loc[data['好瓜与否']== '是','好瓜与否'] = 1
data['好瓜与否'] = data['好瓜与否'].astype('int')
## 取出X和y
X = pd.get_dummies(data.iloc[:,1:-1]).values
y = data.iloc[:,-1].values
## 切割数据集
X_train,X_test,y_train,y_test = train_test_split(X,y,train_size=0.8,random_state=125)
## 建模并预测
BPNet = MLPClassifier(random_state=123)
BPNet.fit(X_train,y_train)
y_pred = BPNet.predict(X_test)
#print(y_test,y_pred)
# #输出预测结果报告
print('预测报告为:\n',classification_report(y_test,y_pred))
西瓜数据集:
编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜与否
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是
2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是
3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是
4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是
5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是
6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是
7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是
8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是
9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否
10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否
11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否
12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否
13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否
14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否
15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否
16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否
17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否